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FOREWORD

The theme of the Mathematical Association of Victoria’s Annual Conference in 2012 
is It’s My Maths: Personalised mathematics learning. The effort that mathematics educators 
make to personalise mathematics for their students is reflected in the conference papers 
collected here. It seems to be a universal desire of the authors to design mathematical 
learning opportunities that challenge and inspire their students to take ownership of 
mathematics and to make it personal. 

We are proud to publish an array of contributors whose interests and careers are varied. 
Their perspectives and range of experience add diversity and interest to these proceedings. 
This year, as in the past, it is exciting to have a view from beyond Australia as well as a strong 
national and local focus. Sincere thanks go to the contributing authors whose efforts are 
reflected in this book and to the reviewers who have offered insightful comments on the 
papers. 

Taking an overview of the collected papers has led me to consider the span of content 
and the sharing of practice these proceedings represent. A theme of problem solving and 
investigations can be seen in the conference papers and this theme connects very closely to 
the issues authors have raised around the use of challenging tasks to stimulate higher order 
thinking in mathematics. Several writers discuss the central importance of mathematical 
reasoning. Different types of reasoning are described and examplesare given to help 
to structure our thinking about the ways in which we can develop students’ reasoning 
in mathematics and in life. For me the link between these papers is the potential of the 
mathematical task to lead to students being mathematicians.

I have also been interested to read authors’ creative ideas describingthe mathematics 
they use and the ways in which they expand and develop mathematical content with 
students. A strong theme across the papers is in the use of computer technology to support 
student learning. It is clear that there are many ways in which technology can enable 
students to investigate, generalise and conceptualise mathematics.

I hope you find much to challenge and inspire you to personalise mathematics for your 
students.

Jill Cheeseman
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DIFFERENTIATION: HOW TO 
REALLY CATER FOR KIDS 

Tierney Kennedy 

Author 

The reality of modern classroom teaching is that no teacher has 
a class of students who are all working at the one level.  Teachers 
who aim their mathematics lesson at only one or two groups of 
learners are choosing to believe in a myth that this type of class 
still exists, if in fact it ever did. Within every single class, even 
if students are streamed, we have a diversity of learners to cater 
for. And for a single teacher with 25 or so different students to 
teach, this can be very difficult to handle. This article shares 
personal experiences of differentiation and explores practical tips 
for handling a multi-leveled class.

My Journey Begins:
The difficulty of teaching a multi-leveled group of children first hit home hard for 

me when I had a grade 5 class in Northern Queensland. I had 31 students in my class. Of 
these four had significant impairments, and two had reading ages of over 18. Looking back 
now it was actually a pretty typical class, but I struggled to keep my students all actually 
learning. I quickly realised that running multiple activities within the one class was not 
practical unless at least some of the groups were just doing “busy work” and therefore not 
needing my help. Unfortunately busy work cut down the amount of “learning time” fairly 
significantly. There had to be a better way!

I decided to approach teaching mathematics in a bit of a back-to-front way and see 
how we went. Instead of starting with an explanation followed by increasingly difficult 
questions, I would start with a difficult problem-solving question and then follow up with 
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an explanation only if it was needed. I was trying to use the questions themselves as the 
learning experience rather than an explanation-based program.

The Problem-Based Process: Our Normal Classroom Practice
I began by asking a few diagnostic questions to find out what my students already 

knew, often trying to lead them down the garden path a little to work out if they really 
understood concepts or if they just had the procedures memorised. I tried to find a point 
where when I asked a question around 80-90% of the kids in my class became a bit stuck. 
This problem then formed the basis for my lesson, and the rest of the time would be spend 
with kids trying to solve it without an explanation provided as to how to do it. For support 
students I kept the problem format and the thinking difficulty the same, simply adjusting 
the content level down. For my extension students I took the same basic question and 
added increasingly complex thinking rather than higher level content. This often included 
working backwards, multiple steps, filling a gap or a non-standard representation. Students 
worked in pairs or threes on their problems, trying multiple approaches and sharing their 
thoughts so far with the rest of the class. Together we analysed each idea and compared it to 
what we already knew of mathematical principles to check that the idea was sound.  

This new approach led to some rather surprising discoveries. The first was the sheer 
volume of mathematics that students could actually work out for themselves when I just 
encouraged them to give it a go. After six months my traditional explanations virtually 
vanished from the class as my students learned to generalise their findings and express them 
as principles, algorithms or formulae. The second surprise was that many fundamental 
mathematical principles that I believed that the students had worked out years previously 
turned out to be pretty shaky, and some were missing altogether. This of course had to be 
dealt with right away. The third, and perhaps most important discovery, was that many of 
my support students who had previously performed poorly at mathematics often improved 
so rapidly that most of them were performing at grade standard within 12 months!

As it turned out, many of my support students had been relying on memorisation without 
understanding underlying concepts. They also had a few fundamental misconceptions 
about basic principles. Using problem-based teaching allowed these to come out, and 
challenged students to work out whether or not their ideas were feasible. Once they self-
corrected some misconceptions and started generalising about mathematical principles 
they suddenly started “getting it” and didn’t have to rely so heavily on memorisation.

My extension students also started to soar. They were being actually challenged 
mathematically rather than just being punished with more boring questions. Within six 
months my class had dramatically improved results at all levels.



Tierney Kennedy 

3

Simple Classroom Strategies for Getting Differentiation to Work
A number of very simple strategies can make a big difference to how easy it is to 

differentiate for your students. Here are my six top ideas for what worked with my students:

1. Support Students
Start with one basic question and then adapt the content in the question down without 

changing the format. This provides support students with the same thinking challenge, but 
with content that is more appropriate.

For example: 
How many ways can you make the number 372 using hundreds, tens and ones?
•	  Can you make it using hundreds, tens and ones blocks so that it is still 372?
•	  How many ways can you make 72 using tens and ones?
•	  How many ways can you make 23? Is 23 the same as 32? They both have the digits 

2 and 3 so are they the same or different? How could you know?
•	  How many ways can you make 6?

2. Extension students
Start with one basic question and then think of “what if…” scenarios to add complexity 

for extension students. This increases the difficulty of the thinking skills significantly 
without necessarily increasing the content load. “What if ” questions turn a standard 
problem into something far more difficult – such as by working backwards, filling a gap, 
creating more steps or adding complexity.

•	  What if you could only use 1 hundred to make 372? How many ways could you 
make it now just using additional tens and ones?

•	  What if you could only use tenths and hundredths?
•	  What if you had to start with 1 hundred, 32 tens and 8 ones? What else could you 

put with it to make 372?
•	  What if you could only use halves, thirds and quarters to make 372?
•	  What if you could use three numbers, but two of them had to be the same? How 

could you make it now? 
•	  What if one of the two numbers had to be 139.7? What are your options for the 

other numbers?

3. Grouping
I usually end up grouping for behaviour rather than for “ability” or “mixed ability”.  

Usually teachers feel quite anxious about how to choose groups rather than accepting the 
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simple fact that we group according to which students will not try to kill each other. I often 
allow students to choose their own groups (maximum of 3 in a group), as long as no one is 
excluded and they are all working. If any group misbehaves then they are split up. It is quite 
a lot of fun to be able to use the threatened loss of mathematics privileges as a behaviour 
management tool!

4. Creating Flexible Space Using a Challenge Table
Keep one spare table in your room with about four chairs at it. This allows you to 

have a very flexible space to cater for different students as they need it. I use this set up in a 
number of different scenarios:

1.  Once I have set a problem: “If you understand what to do, you can go back and 
work with your partners now. If not, come to the challenge table and we’ll have a 
talk about it”. This stops random wandering by students who have no idea how to 
start.

2.  Once we have come back together and shared ideas, and students have realised 
that their initial ideas were not ever going to work and they need to try something 
different: “If you want to change your mind you can go back and work with your 
partners now. If you think you are right, come to the challenge table.” This then 
leaves me with two distinct groups: the ones who are totally wrong and have 
no idea, and the ones who are right or pretty close to being right. I usually send 
the group who are right/almost right to the challenge table to work out who is 
right, or to complete a “what if…” question while I work with those who still have 
misconceptions.

3. When I cross-reference names with observations it often appears that I seem to 
consistently miss particular students. These are usually the quiet students who 
seem to blend into the background rather than grabbing for attention. When I 
see this happening, I invite those students to work with me at the challenge table 
for five minutes so that I can check on where they are up to.

4.  I like to call students with similar communicating styles to work at the challenge 
table, such as all those who are quiet and just agree with everyone else in their 
group. When a group is formed with just those students, one of them eventually 
has to try something to solve the problem. Alternatively, try calling all the 
dominant students to fight it out amongst themselves. That frees up the other 
students to think for themselves.
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5. Helping Everyone at the Same Time
One of the difficulties of posing a problem just beyond what students know is that 

everyone needs help at the same time! To help deal with this overload I use Tip Cards, 
numbered and blue-tacked to the board, for a problem. The tips should increase in the 
amount of help that they offer to groups. A group of students who become stuck while 
working on a problem can decide to go and get one of the tips to give them a clue. They 
record the tip number on their books. They can then try to solve the problem again, or 
decide to get another tip. Usually they want to get as few tips as possible, so they work 
together pretty well to try and solve the problem without getting more cards.

For example (Kennedy, 2011, p.47):
•	  Is there a different combination of blocks that you could use so that you would 

still have 372? Can you make it without using 3 hundreds, 7 tens and 2 ones and 
still make it to be the same size?

•	  How many hundreds do you have? If you only had 2 hundreds blocks, is there a 
way that you could use other blocks as well so that you could still make 372?

•	  Let’s just look at the 72. How many tens blocks are there? How many ones blocks 
are there? Is there another combination of blocks that you could use to make 72?

•	  Make 6 tens and 12 ones on one side and 7 tens and 2 ones on another side. Are 
these amounts the same? How do you know? If you line them all up into a straight 
line will they be the same length? What does that tell you?

6. Teach Students to Self-Differentiate in Lessons
Once I have determined the base problem (where 80-90% of students are a bit stuck), 

I use Differentiated Problems written in different colours on the whiteboard and allow 
students to work out which problem they want to try and solve. The base level problem 
goes in the middle, two above and two below are also present. Each student has to solve 
at least two levels of the problems. This way everyone can start on the base level problem, 
drop down if it is too hard, and go up if it is too easy. Once they solve one problem they 
automatically need to go up a level and try the harder question as well.

Once I started using problem-based teaching to differentiate it quickly becomes 
addictive. It is just so exciting to see students at all levels being challenged to think 
mathematically and actually work something out for themselves. Differentiation is a lot 
of fun when done in combination with a problem-based approach, but in a traditional 
classroom it can be both difficult and time-consuming.
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Reference
Kennedy, T (2011). Back-to-front maths, Grade 3 teaching resource book. Townsville, 

Queensland: Kennedy Press.
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RATIO: NEW IDEAS – AN OLD TOPIC 

Robert Money

Education Consultant 

This paper discusses learning strategies appropriate for two types of 
ratio problems. The use of ratio tables is explored as a strategy for solving 
the fixed-ratio problems that occur widely across the curriculum. For 
problems involving changing ratios the paper discusses how students 
might benefit from being able to categorize different problem sub-
types and choose appropriate solution strategies, in particular the use 
of geometric modelling using ratio blocks.

Ratio Tables – for Common Ratio Problems
The 2002 Yearbook of the National Council of Teachers of Mathematics (Littwiller & 

Bright, 2002) was a key document amongst many devoted to Making sense of fractions, ratio 
and proportions. The use of ratio tables has been much less discussed previously (Middleton 
& van den Heuvel-Panhuizen. 1995; Van der Van der Valk, Wijers, & Frederik, 2000; 
Money, 2011) and their potential for use in numeracy across the curriculum has not been 
fully developed. 

For example, as part of an ‘Estimation walks’ activity (HREF2: Maths 300) a numeracy 
focussed teacher – perhaps even a Phys. Ed. Teacher - might ask “70 paces in 40 seconds to 
walk the 50 metre track would be how far in one minute?” In response, students with different 
levels of proficiency in proportional reasoning might develop the following ratio tables:-
Table 1. Ratio Table Solutions to ‘Estimation Walks’ Activity
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Student 1 a Student 2 a c = a + b

metres 50 25 75 metres 50 25 50 + 25 = 75

seconds 40 20 60 seconds 40 20 40 + 20 = 60

paces 70 35 105 paces 70 35 70 + 35 = 105

Student 3 a Student 4 a b = a ÷ 40 c = b×60

metres 50 75 metres 50 1.25 75

seconds 40 60 seconds 40 1 60

paces 70 105 paces 70 1.75 105

Class discussion could lead to the top row entries, which explain the different thinking 
processes of the four students. Thankfully, no student has made the mistake of adding a 
constant, say 20, to each column. All students use the first property of ratio tables - that you 
can multiply or divide as you fill in new columns. 

•	 Students 1 and 3 show a good understanding of the proportional relationships involved.
•	 Student 2 could well be limited to multiplicative halving and doubling strategies. 

This fits well with focussing attention on finding distances and paces for the 
remaining 20 seconds of the minute. The student uses the second important 
property of ratio tables: ‘You can add multiples’. The procedure of the last column is 
justified by the distributive law - in this case  
The student may not realize the use here of the more sophisticated property:  

•	 Student 4 has used the ‘unitary method’ strategy, possibly with the aid of a 
calculator. The method could well have been taught previously, with the chances 
of success improved by the decimals involved being relatively simple.

Ratio tables have the following nine advantages over other approaches to constant 
ratio problems:
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1. They do not involve the algebra of proportion equations, but scaffold for it.
2. They encourage exploration, with different methods reaching the same correct solution.
3. They provide a record of the student’s thinking, valuable for the teacher as diagnostic 

and assessment information.
4. Their use can be explained in terms of the important properties of equivalent fractions 

and the distributive law.
5. They provide a simple means of representing a problem and focussing attention on the 

target: for example ‘We need to get a 100 in the metres row.’
6. They can be used to generalize approaches, in particular to assist students in dealing 

with more challenging arithmetic. (See below.)
7. The row and column headings help students keep track of the quantities and the 

operations involved in what they are doing.
8. They can be extended to extra rows, involving ratios of more than two quantities.
9. Their use can complement learning in a spreadsheet environment in which the ‘Copy 

down’ facility supports the multiplicative requirements of ratio tables.

Extending the Table
A number of further questions could arise from discussion of the results of the above 

‘Estimation walks’ activity.
Time in hours?    Distance in kilometres from home to the centre of town?
In consequence, students could structure their approach to these problems by 

extending their ratio tables by providing extra rows for ‘minutes’, ‘hours’ and ‘kilometres’ 
and by entering the  initial conversion factors within the table.
Table 2. Extended ratio table for the ‘Estimation walks’ activity

metres 50 75 1000

seconds 40 60

paces 70 105

minutes 1 60

hours 1

kilometres 1 5
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Changing Ratio Problems
A standard approach to problems involving change of ratio is to use algebra, presumably 

with learning algebra as the goal that motivates a teacher-directed approach. Curriculum in 
Singapore in particular (Koay & Fwe, 2003; Ministry of Education, Ministry of Education, 
2006; Musa & Malone, 2011) also emphasizes approaches involving ‘ratio blocks’ and 
systematic trials – in particular for problems requiring whole number solutions.

These problems can be fitted into five categories according to what is the given 
information and what is required.

•	 Type 1: Same change for both quantities
Example: The ratio of Josie’s age to her father’s age is 2:7. 15 years later she will be half his 
age. How old is Josie now?
Harder example: Mum’s age to grandmother’s age is 3:5. 4 years later the ratio of their ages 
is 5: 8. How old is mum now?

•	 Type 2: One quantity remains the same
Example: A drinks mixer starts with 200 ml of a drink containing 3 parts fruit juice to 2 
parts water. How much extra water would be needed to make it 1 part fruit juice to 3 parts 
water?
Harder example: A drinks mixer starts with 200 ml of a drink containing 3 parts fruit juice 
to 2 parts water. How much extra water would be needed to make it 2 parts fruit juice to 3 
parts water?

•	 Type 3: Total quantity unchanged
Type 3a: Final ratio given
Example: Ben and Jack shared some footy cards in the ratio 1:3. When Jack gave 8 of his 
cards to Ben, the new ratio of Ben’s cards to Jack’s was 2:5. How many cards did Jack have 
at first?
Type 3b: Final ratio not given
Example: Ben and Jack shared some footy cards in the ratio 1:3. After Ben gave one quarter 
of his footy cards to Jack, Jack had 80 more cards than Ben. How many footy cards did they 
have altogether?

•	 Type 4: Given changes to quantities
Example: Julie and Jo owned savings in the ratio 4: 3. Over the next week Julie increased her 
savings by $10 and Jo increased hers by $12, bringing the ratio of their savings to 5: 4. How 
much money did each girl end up with?

•	 Type 5: Ratios of ratios
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Natural number example (with more than one answer.)
The ratio of the number of boys to the number of girls in a class is 3:2. If each boy and each 
girl is given stickers in the ratio 3:4, a total of 510 stickers are needed. How many boys and 
how many girls could there be in the class? 
Continuous number example (with an infinite number of answers.)
The ratio of mango juice to lemon juice in a fruit drink mix is 3:2. Straight mango juice 
requires just three quarters of the amount of sugar as does straight lemon juice. If 510g of 
sugar is to be used, how much mango juice and how much lemon juice are needed in the 
fruit drink mix? 

Research (Musa & Malone, 2011) has provided support for the argument that student 
understanding and performance on such ratio problems is improved when their attention 
is focused on recognition of such categories. This accords with general theories on Case 
Based Reasoning and Cognitively Guided Instruction and is not surprising, since the non-
algebraic approaches emphasized in the Singapore curriculum are appropriate to Types 1 
through 3 as listed above. 

Consider the Type 1 ‘age difference’ problem above. Since a whole number solution 
is required perhaps the best solution strategy is ‘systematic guess and check’. However, 
geometric modelling using ‘ratio blocks’ (HREF3: Thinking blocks) can be successfully 
applied:-

Start with blocks representing the initial ratio of ages:-
Josie
Dad

Then add equal blocks to each row, until Josie’s blocks are half dad’s.
Josie
Dad

Figure 1. Block model for a Type 1 problem.

The model (Figure 1) is completed once the student recognizes that Josie’s 5 blocks are 
half of dad’s 10.

The three extra blocks required represent the extra 15 years, so each block represents 5 
years. From this it follows that Josie’s age now is 2 x 5 = 10.
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For Type 2 problems blocks are added to one row until the required final ratio is 
obtained. For the ‘drinks mixer’ example above, start with the initial 3: 2 ratio represented 
as 3 blocks juice and 2 blocks water, with each block representing 40 ml (Figure 2).

Juice 40 40 40
Water 40 40

Then add blocks to the water until the 9 water blocks are recognized to be 3 times the 
number of juice blocks.

Juice 40 40 40
Water 40 40

Figure 2. Block model for a Type 2 problem.

The extra water represented by the 7 blocks is therefore 7 x 40 = 280 ml.
For Type 3 problems blocks need to be moved from one row to the other. For the first 

of the ‘Ben and Jack sharing’ problems above, students need to recognize that the number 
of blocks to be shared must be a common multiple of 4 (1 + 3) and of 7 (2 + 5), namely 28.

Start with a total of 28 blocks shared in the ratio 1: 3, with 7 for Ben and 21 for  
Jack (Figure 3).-

Ben
Jack

Once one block is moved from Jack’s row to Ben’s the student needs to recognize Ben’s 
8 blocks as being two fifths of Jack’s 20 blocks.

Ben 8
Jack

Figure 3. Block model for a Type 3 problem.

The one block moved represents 8 footy cards, so Jack must have started with  
21 x 8 = 168 cards.

Problems of the above three types are presented at the ‘Thinking Blocks’ website 
(HREF 3). The following screenshot (Figure 4) shows the half way stage of the solution of 
a Type 2 problem. The block model has been built and now the student needs to interpret 
the values involved.
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Figure 4. Screenshot from http://www.thinkingblocks.com/ThinkingBlocks_Ratios/TB_
Ratio_Main.html

Ratio in the Curriculum
Ratio tables are becoming increasingly used in mathematics classes. The next task 

for mathematics teachers is to introduce colleagues in other faculties to the powerful 
way in which ratio tables can support many of the numeracy opportunities that arise in 
their classrooms. Ratio tables can provide an excellent starting point for inter-disciplinary 
dialogue and stronger cross-curricular links.

The use of ratio blocks in tackling quite complex ratio problems is a feature of the 
primary curriculum in Singapore. This example can be followed in our Australian middle 
school student-centred classrooms, with case based reasoning used to categorize and solve 
the different types of problem. Algebraic approaches to such problems can be addressed 
at an appropriate time, but experience with ratio block models and case based reasoning 
can be powerful supports of conceptual understanding and procedural skill in this context. 

Current Australian curriculum documents (HREF1: ACARA) contain only brief 
descriptions of ratio. Curriculum for Singapore, by contrast, not only specifies the inclusion 
of changing ratio problems but specifies the various different sub-types of such problems. 
The draft Australian Mathematics curriculum mentions constant ratio in Year 6 and again 
in Year 8. Proportion is not introduced until Year 10. Rates, ratio and proportion make up 
one of four topics in Unit 1 (Year 11) of the draft Australian Senior Mathematics Course B: 
General Mathematics. In the context of these limited references there is a need for a strong 
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Australian research effort on the teaching of ratio, ratio tables in particular. Encouraging 
results from other countries (e.g. The Netherlands, Singapore, and USA) need to be tested 
in the Australian classroom environment. Classroom teachers can play their part in calling 
for this research effort and in having it undertaken in their classrooms.
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MATHEMATICATM: PANDORA’S BOx 
OR CLASSROOM EMPOWERMENT?

Brenton R Groves 

Independent Researcher - VIT Reg 306183 

The amount of Mathematica™ material on the web is huge: the 
alphabetical site index, MathWorld - 13,086 entries, over 8000 
interactive demonstrations under the Computable Document 
Format (CDF), tutorials and howtos, forums, blogs and The 
Virtual Book (10,000 pages). Many teachers not connected with 
Wolfram have contributed essays and books on the web. Everything 
can be downloaded for free from the Internet and Mathematica™ 
is not required.

I: Teaching with Mathematica™
URL: to download this presentation, 
http://dl.dropbox.com/u/49383304/MAV.2012.Teaching.pdf

Set Up:
Note: If there is any problem with downloading the Dropbox URLs through the hyperlinks 
in this paper, copy the hyperlink and paste it into any browser. Save the file on your hard disk.

1.  If you prefer hard-copy to a computer screen print this saved PDF file for 
individual study. 

2.  Download a Word-format presentation on to your hard disk from 
the following URL through any search engine and bookmark the file. 
http://dl.dropbox.com/u/49383304/MAV.2012.Teaching.Hyperlinks.docx

The reason for using this Word file on your own disk is that the blue URLS in this 
paper are listed as hyperlinks in the order they appear. They can be downloaded with a Ctrl/
Click from the computer screen and this saves a lot of typing.



Brenton R Groves 

17

The presentation consists of three modules:
1.  Wolfram Research Web Resources (Main ‘Visual’ Page);

a.  Wolfram Blog
b.  Wolfram Demonstration Project
c.  MathWorld
d.  Forums
e.  Alphabetical Site Index

2. Wolfram Computable Document Format (CDF) Player:
a.  Download free CDF Player.
b.  Three Examples – Demonstration Project

3. Resources outside Wolfram Research:

Wolfram Web Resources (Main Menu):
Ctrl/Click on http://www.

wolfram.com/webresources.html 
There are 18 icons plus the link to the 
alphaindex at the lower right hand of 
the page. 

Four of these icons and the 
alphaindex are of direct interest to 
teachers.

blog.wolfram.com Get tips, 
tricks, ideas, views, and the latest 
Mathematica news straight from 
the Wolfram Research front lines, 
with frequent updates by top team 
members.

h t t p : / / d e m o n s t r a t i o  
ns.wolfram.com/ Bring concepts 
to life in science, technology, 
mathematics, art, finance, and a wide 
range of other fields, from elementary 
education to the frontiers of research, 
with this expanding collection of 
interactive visualizations. See CDF 
Player below.Figure 1 Wolfram Resources Main Menu
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Wolfram Math World (13,086 entries) http://mathworld.wolfram.com/ Search for any 
math topic, Hotel Room for example. This is the old problem of a missing dollar for three men 
renting a hotel room. Direct URL: http://mathworld.wolfram.com/MissingDollarParadox.
html, http://www.wolfram.com/support/community/ or forums.wolfram.com 

Moderated forums supporting the ever-growing Wolfram Research community.

MathGroup Forum is a moderated email list and internet newsgroup. 
Members number in the many thousands from all over the world 
and include most of the leading experts in the use of Mathematica 
MathGroup archives dating back to 1989 are also available.

Student Support Forum Post your queries about using Mathematica to 
this forum or browse previous posts for answers to questions that others 
have posted.

Faculty Program Forum Connect and share ideas with other educators 
through the Wolfram Faculty Program. Any teacher intending to use 
Mathematica™ resources in their teaching should join this forum. http://
www.wolfram.com/faculty/ The Wolfram Faculty Program Membership 
Portal has the details on joining.

The alphabetical site index’ at the extreme lower right-hand side of the main menu 
is equivalent to a search-able library card catalog of all Wolfram documentation. Direct 
URL: http://reference.wolfram.com/alphaindex/A.html

CDF Player Download:
Wolfram Research’s Computable Document Format (CDF) is going to become 

a universal textbook and journal article format. It allows an author to insert interactive 
graphics and visuals and create hyperlinks into a PDF style format that runs under any 
operating system. Complete details can be found at http://www.wolfram.com/cdf/ .

This web page lets you download a free Computable Document Format (CDF) reader 
which can display any animated CDF file or a Mathematica notebook with a static version 
of its source code. Download the program to your hard disk from http://www.wolfram.
com/cdf-player/ and then bookmark the program or create a CDF shortcut icon in your 
Mathematica folder.
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Figure 2. One of 7787 Interactive Demonstrations Powered by CDF. 

Demonstrations:
1.  Click on CDF icon or bookmark to bring up the Wolfram CDF Player. Then click 

on ‘Welcome to Wolfram CDF Player’ under the ‘Help’ palette.
2. The Welcome page lists two slides on the mid right-hand side. Click on 2/2 and 

then the ‘Get Started’ box to bring up the Wolfram Demonstration Project listing 
some 7332 interactive demonstrations. The index is at the bottom of the screen.

3. Or direct URL: http://demonstrations.wolfram.com/
4. You can download the demonstration as a CDF file which will run under the 

CDF Player or as a Mathematica notebook .nb with the source code. The CDF 
Player will open .nb files but they are not animated or modifiable.

Example 1: 
http://demonstrations.wolfram.com/RelationshipOfSineAndCosineToTheUnitCircle/ 

Below the image are three ‘snapshots’ that can be cut and pasted into any word 
document if a computer is not available.

Example 2: ‘Euclid’s Pythagorean Theorem Proof ’
Search for ‘Proof Pythagorean Theorem’ in the search box at the top of the screen 

for an example. Eleven demonstration CDF files are given. Click on ‘Euclid’s Proof of the 
Pythagorean Theorem’ (#5) to bring up the CDF file and run the interactive demo. Direct 
URL: http://demonstrations.wolfram.com/EuclidsProofOf ThePythagoreanTheorem/
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Example 3: ‘Wrapping the number line around the unit circle
Return to the demonstration program web page http://demonstrations.wolfram.com/ 

and search for “Unit Circle Number Line’. 18 examples returned. Click on ‘Wrapping the 
number line around the unit circle’ (#1). Direct URL: 
http://demonstrations.wolfram.com/WrappingTheNumberLineAroundTheUnitCircle/

This demonstration should convince any student that 2 π is a better choice than 360 
degrees when calculating trigonometric (or circular if you wish) functions.

Resources outside Wolfram Research:
Googling ‘Mathematica secondary education – Wolfram’ brings up hundreds of 

applications by teachers and academics who have their own web pages. Typical entries:
HREF1: Oliver Knill, Harvard University. Three neat Mathematica demos for teaching. 

With source code. Uses video animation. http://www.math.harvard.edu/~knill/pedagogy/
techdemo/mathematica/

HREF2: Sadri Hassani, Mathematical Methods Using Mathematica: For Students 
of Physics and Related Fields, 239 pages. http://202.38.64.11/~jmy/documents/
ebooks/Hassani_Mathematical_Methods_Using_Mathematica,Springer.pdf  Use browser if 
hyperlink fails.

HREF3: Andrew Schultz, Math 103: Matrix Theory with Applications, Complete 
subject documentation and test sheets. Stanford University. http://palmer.wellesley.
edu/~aschultz/summer06/math103/ 

HREF4: James J Kelly, Essential Mathematica for Students of Science: Tutorial
Approach to Mastery of Mathematica, University of Maryland. A massive effort of value 

to anyone writing course material using Mathematica. http://www.physics.umd.edu/courses/
CourseWare/EssentialMathematica/  

Additional References:
HREF5: Mathematica Learning Path for Primary and Secondary Educators Learn 

Mathematica or advance your expertise with high-level resources, from tutorials to videos 
and online training, specifically curated for primary and secondary educators. http://www.
wolfram.com/support/learn/primary-secondary¬education.html 

HREF6: Free Online Seminar Catalog Learn about Mathematica, the Computable Document 
Format (CDF), and other Wolfram technologies. Wolfram Training courses include quick 
starts to cover the basics and in-depth looks at concepts and applications. Watch courses 
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on demand according to your schedule or join live courses online, in a classroom, or at 
your organization. http://www.wolfram.com/services/education/seminars/ 

HREF7: All 1084 secondary school educational demonstrations, displayed 29 to a page.
http://demonstrations.wolfram.com/education.html?edutag=High+School+Mathemati

cs&limit=20 
The following are details of the first major CDF mathematics text, the wave of the future:
HREF8: Courseware of the Future—Today: Developing Interactive Textbooks with CDF. A 

2:52minute video by Eric Schulz, Co-author of Calculus by Briggs and Cochran. 

He says, “It’s way beyond a regular word processor. It’s beyond web pages 
and applets and Java...” Using the free Wolfram CDF Player, students 
can immediately navigate through sections and explore the ebook’s 
interesting interactive figures and intuitive text, which combine to bring 
hard-to-convey concepts to life. “Those that have been teaching have 
been yearning for something that would bring our subject alive and 
move beyond the textual content we normally find, and support that 
with visualizations that are interactive,”

http://www.wolfram.com/cdf/information-kit/developing-interactive-
textbooks-with-cdf.html 

Figure 3. Wolfram Web Page: Uses and Examples of the Computable Document Format 
(CDF)

HREF9: Open  http://www.wolfram.com/cdf/uses-examples/journal-articles.html
Each of the square boxes gives an abstract of a CDF example. The one of most 
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interest to teachers (shown above) would be ‘textbooks’. Clicking on ‘View Full Example’ 
downloads the complete CDF file
HREF10: Offer of classroom materials for mathematics teachers from the publisher.

http://www.pearsonhighered.com/briggscochran1einfo/detail/learn/index.html 

Comments on this Presentation:
A PowerPoint slide show of this paper with images and teaching notes, which was 

presented at the MAV 2012 Annual Conference, can be downloaded from:
http://dl.dropbox.com/u/49383304/MAV.2012.Teaching.ppsx
Comments and criticisms on this paper are welcome and will be acknowledged. 
Email: grovesbr@optus.net.au 

Disclaimer:
I have no financial gain from the sale and use of the Mathematica program in any context. 

The education division of Wolfram Research in the US supplied me with a complimentary 
copy of Mathematica 8 for the preparation of this presentation. The opinions expressed herein 
are my own and cannot be blamed on anyone else. Brenton R Groves.
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RANTS (AND RAVES!): RICH 
ALGEBRA AND NUMBER TASKS

Lorraine Day

University of Notre Dame Australia

Rich tasks, incorporating open-ended questions and 
investigations, can be used to expose students to alternative 
representations, reasoning and approaches to problem solving 
leading to deeper understanding. Students who are encouraged 
to look for patterns in their answers will discover rules and make 
meaning of them rather than trying to memorise rules that have 
no meaning for them. The Number and Algebra Strand of the 

Australian Mathematics Curriculum provides an opportunity 
for the development of rich tasks to link algebraic reasoning 
and arithmetical thinking to develop them simultaneously. The 
process of personalising, contextualising and adapting existing 
tasks to ensure they are rich, relevant and have the Mathematical 
Proficiencies embedded provides further opportunities. There are 
some great tasks and puzzles available that can be used as the 
catalyst for developing tasks that reflect your personality and 
interests and those of your students. 

Introduction
In the Australian Curriculum: Mathematics, Number and Algebra are developed 

together, as they complement and enrich each other (ACARA, 2010). Engaging with a variety 
of contextualised problems in a structured manner, using varied representations to encourage 
students to reason algebraically, find generalisations and justify their solutions, will enable 
complementary development of algebraic and arithmetical thinking (Siemon et al., 2011).
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Generalisation is at the heart of mathematics and consequently providing students with 
many opportunities to generalise should be central to mathematics teaching and learning 
(ACARA, 2010; Siemon et al., 2011). Continual emphasis on finding computational 
answers to arithmetic problems, rather than an emphasis on explaining and justifying the 
operations used in finding solutions, can stifle the development of algebraic reasoning 
(Warren, 2002). It is easier for students to generalise when they actively engage with a 
problem (Warren & Cooper, 2008) within a meaningful context.

It is far more efficient for students to work with patterns, hypothesise and to test 
conjectures rather than trying to memorise rules for working with numbers. Students who 
are encouraged to look for patterns and structure in their answers will discover the rules 
and make meaning of them rather than trying to remember the rules that have no meaning 
(Siemon et al., 2011). It is important for students to build on their understanding of the 
number system to describe relationships and form generalisations (ACARA, 2010) and 
this cannot be done if there is no understanding on which to build.

Rich tasks, open-ended questions and investigations can be used to expose students to 
alternative representations and approaches to problem solving, reasoning and understanding. 
Concentration on the ‘big ideas’ of Number and Algebra will allow teachers to ensure that 
their focus is on the important aspects of a topic rather than incidental skills (Small, 2009).

Mathematically Rich Tasks
Mathematically rich tasks have the opportunity to transform school mathematics from 

a collection of memorised rules and procedures into a vibrant, connected subject where there 
is an opportunity to develop an understanding and exploration of mathematical concepts 
(Piggott, 2010). They allow the students to ‘get inside’ the mathematics (Hewson, n.d.). 
They do this by having the ability to reach most learners where their known understandings 
meet the unknown (Ferguson, 2009) or the Zone of Proximal Development (Vygotsky, 
1978).

There have been numerous lists published of the characteristics of rich tasks (For 
example Piggott, 2010; Hewson, n.d.). The best rich tasks allow students to work 
mathematically, and see others working mathematically, by allowing them to get started 
and explore, while still providing opportunities for challenge and extension. By their 
openness these rich tasks have multiple entry and multiple exit points that cater for student 
diversity. Within meaningful and intriguing contexts they develop thinking, reasoning 
and communicating skills while seeking genuine understandings. Rich mathematical tasks 
cater for a variety of learning styles, while encouraging multi-dimensional learning. They 
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highlight the interdisciplinary connections both within and outside of mathematics and 
use ICT support effectively (Day & Lovitt, 2010). They encourage students to explain 
their thinking which in turn reveals the depth of understanding (Siemon et al., 2011), 
which make rich tasks ideal tools to support assessment.

By itself no task is inherently rich. It is the environment in which the teacher presents 
them, the support and open-ended questioning that is utilised and the expectations placed 
on the students that makes them rich (Piggott, 2010). By employing a large repertoire of 
teaching and questioning strategies and expecting students to become co-constructors 
of their own meaning, teachers can add to the richness of tasks (Day & Lovitt, 2010). 
Furthermore, teachers who encourage students to challenge themselves and reflect on their 
learning add to the richness of the learning outcomes (Piggott, 2010).

Designing Rich Tasks
There are a plethora of puzzles, problems and textbook questions which have the 

potential to be recast as rich tasks. When redesigning tasks it is useful to have a framework 
in mind, such as a working mathematically process with a concrete-representational-
abstract (Allsopp, Kyger & Lovin, 2007) pedagogical structure embedded. 

A typical textbook question such as shown in Figure1 provides a starting point for 
redesigning a problem into a rich task. This task as stated is closed. To convert the question 
to a rich task requires it to be more investigative to encourage thinking, reasoning and 
communicating. This can be achieved by establishing a need to create and test hypotheses 
through using a range of problem solving strategies and extending the task to include 
a generalisation that can be explained and justified by the students. An opportunity to 
encourage the use of concrete materials prior to the diagrammatic representation and then 
moving to the abstract is present and would enhance the richness of the task while making 
it more accessible for a variety of students.
The first four triangular numbers are shown by this pattern of dots.
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Copy the pattern into your book and add the next two triangular numbers to your 
drawing.

What is the fifth triangular number?
What is the sixth triangular number?
Copy and complete the table below. 
See if you can find a pattern to save time.
 

Triangular number 1st 2nd 3rd 4th 5th 6th 7th 8th

Number of dots 1 3 6

Figure 1. Textbook question 1 (Kammann, 1998, p. 168).
A redesigned task may look something like Figure 2. This task is set in the context of a 

lolly shop which is meaningful for most students. It sets the scene for students to explore 
the problem using concrete materials. The task is easily extended to provide opportunities 
for students to examine equivalent expressions, substitute values into expressions, work 
backwards to solve linear equations and to look for a generalisation.

The closed task which could be answered by drawing and counting or additive thinking 
can be transformed into a task where algebraic reasoning and many of the big ideas of 
number and algebra can work together to establish a rich mathematical experience. The task 
is easy to begin for all students and can be extended as far as a diagrammatic justification for 
the general formula for triangular numbers.

Figure 2. The Old Fashioned Lolly Shop.

Mrs Brown runs an old fashioned lolly shop where 
she stores the lollies she makes in large jars.
When customers come into the shop and ask 
for a certain number of lollies, Mrs Brown uses a 
triangular frame to help her to quickly work out 
how many lollies she has.
The frame is so old that the numbers on the side 
of the frame have worn off. Your job is to help Mrs 
Brown work out what the numbers on the frame 
should be.
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The initial statement (see Figure 2) of the Old Fashioned Lolly Shop task is just the 
starting point of the rich task, and is just the tip of the iceberg. The statement enables 
students to get started. In order to elicit deeper thinking about this task, it is important that 
open-ended questions which invite students to demonstrate their understanding are asked. 
Examples of questions of this type are:

“How would we work out the total number of lollies in a frame which 
holds a hundred rows of lollies?”

“A customer bought 470 lollies for a birthday party and he remembered 
that Mrs Brown filled her frame and then added 5 more lollies. Can you 
explain how you would work out how big the frame was that Mrs Brown 
used?”

“If I tell you how many rows in a frame, can you tell me how you would 
work out how many lollies it would hold? Is there a rule for how we 
work it out? Can you explain your rule in words? Can you show me why 
your rule works by making a model or drawing a picture? Are you able to 
write your rule in symbols?”

Another powerful and important concept in the Number and Algebra strand is that of 
equivalence. Quite often, in an investigative setting, different groups of students see generalisations 
in differing ways (see Figure 3). This provides an opportunity for students to determine that all of 
the correct generalisations are equivalent even though they may look different.

Concrete Manipualtion

The triangular number you are looking for is the number of rows multiplied by half 
the number of the next row’s number. Or ...
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Figure 3. Different ways of seeing the triangular numbers’ generalisation.

The possibilities of redesigning tasks to include the elements of rich investigative tasks 
are endless. With experience, it becomes easier to look at a routine question and see how 
it may be developed, especially if it can be linked to a meaningful or authentic context. As 
we know that students should be exposed to similar types of problems within a variety of 
contexts (Polya, 1957), it is sometimes a matter of changing the context of a problem that 
allows it to be opened up. A further example of a textbook question is illustrated in Figure 4.

Figure 4. Textbook problem 2 (Kammann, 1998, p. 150).

The theatre restaurant problem
Streeton Heights Senior High School is 

organising a theatre restaurant night to raise money 
for the new school gymnasium. The organisers need 
to work out how many people they can fit into the 
hall. The tables can be arranged in the formation 
shown.

How many people could sit at the tables if there are 
seventy-five tables which need to be arranged in three 
rows of equal length?

The triangular number you are looking for is the row number multiplied by the next 
row’s number divided by two.

The nth triangular number =  
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By altering the context and opening up the task, it is possible to include several aspects 
of a rich investigative task (see Figure 5). This particular example is situated within an 
authentic context in East Perth, although it is easily transferrable to other parts of the 
country.

Figure 5. The Long Table Dinner.

Once again, this stimulus is only a starting point for the task. The richness is explored 
by guiding students and asking appropriate open questions. By carefully orchestrating the 
questions, it is possible to cover many of the big ideas in algebra within this one task so that 
its richness is exposed. Among these big ideas are the concepts of a variable, generalisation 
and function. Substitution and solution of equations can be used to solve problems about 
the number of guests who can be seated and the number of tables needed for certain 
numbers of guests. Equivalence can be examined from the way in which the students see 
the generalisation. The linear function can be graphed and graphical solutions to equations 
can be explored. Even the concepts of domain and range, as well as discrete and continuous 
functions, are able to be introduced in an informal manner. Further, simply rearranging the 
tables into various other configurations, would provide many available opportunities for 
extending the mathematics.

Conclusion
The linking of number and algebraic thinking in the Australian Curriculum: 

Mathematics provides an opportunity for mathematical teaching and learning to become 
more concerned with patterns, relationships and generalisations rather than facts, skills and 
rules without meaning (Mulligan, Cavanaugh & Keanan-Brown, 2012). The inclusion of 
the Proficiency strands of understanding, fluency, problem solving and reasoning highlights 

The Long Table Dinner
In East Perth each year the restaurants at Claisebrook 

Cove have a Long Table Dinner along the side of the cove. 
Imagine you have been put in charge of the organisation of 
next year’s event. How are you going to work out how many 
tables you will need and the number of guests you can seat?
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that rich tasks which link algebraic reasoning to arithmetical thinking through the 
development of thinking, reasoning, communication and justification are an appropriate 
mode for teaching and learning mathematics. Modifying tasks to model working like a 
mathematician within meaningful contexts is one way in which the link between number 
and algebra can be made more meaningful for our students.
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REASONING FOR PROOFS, 
PATTERNS AND IDEAS

Derek Holton and Kaye Stacey

Melbourne Graduate School of Education, University of Melbourne

Reasoning is one of the proficiency strands in the Australian 
curriculum. This paper looks at the four main types of reasoning 
(deduction, induction, abduction and analogy) and explains 
what they are and their value. It uses classroom problems as 
examples to show where the different types of reasoning occur. 
These four types of reasoning are for the production of ideas, the 
production of patterns, and the production of proofs.

Introduction
Reasoning has always been important in mathematics, so the Australian curriculum 

emphasises reasoning by including it as one of the proficiency strands. The curriculum 
(HREF1) says this about reasoning. 

“Students develop an increasingly sophisticated capacity for logical 
thought and actions, such as analysing, proving, evaluating, explaining, 
inferring, justifying and generalising. Students are reasoning 
mathematically when they explain their thinking, when they deduce 
and justify strategies used and conclusions reached, when they adapt the 
known to the unknown, when they transfer learning from one context 
to another, when they prove that something is true or false and when 
they compare and contrast related ideas and explain their choices.”

In this paper we will define and give classroom examples of four basic types of reasoning. 
The names are only important for an adult audience so we will delay their introduction, but 
the concepts they stand for are fundamental to the way that mathematics develops. The types 
of reasoning assist in the production of ideas, the production of patterns, and the production 
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of justifications. Reasoning in these ways is used in all parts of human life. In mathematics 
they are more explicit. Other examples and explanations are given by Holton, Stacey and 
Fitzsimons (2012). 

Knowing about these forms of reasoning will help teachers understand where a student 
is in their learning, in their solving of a problem, and in their ability to prove mathematical 
results. Particular words that students use may act as cues to help the observer see what 
reasoning is being or has been employed. We will list these as we talk about each type of 
reasoning. Knowing about these types will help teachers move students forward in their 
overall knowledge of mathematics.

Reasoning for Proofs
We begin with reasoning for proofs because this is an important feature of mathematics, 

which distinguishes it from other subjects. In mathematics, given the truth of the axioms and 
the rules of logic, statements can be proved beyond any doubt. Proof in mathematics is more 
secure than proof in any other area of human activity. We also start with reasoning for proofs 
as it shows a basic structure that we will use in explaining the other types of reasoning.

The most famous example of deductive reasoning, dating back to Ancient Greece, is the 
following. “Socrates is a man; all men are mortal; so Socrates is mortal”. Deductive reasoning 
(see Reid & Knipping, 2010) consists of a ‘case’ which is a basic statement. This is followed by 
a ‘rule’ that can be applied to the case. As a consequence of the rule acting on the statement 
we get another statement called the ‘result’. The case is Socrates is a man, the rule is all men are 
mortal and the result is Socrates is mortal. Deductive reasoning is at the heart of mathematics. 
It is the reasoning that proves every step of a mathematical proof. Suppose we want to prove 
that a triangle (see Figure 1a) with vertices at the centre of a circle O and on its circumference 
(points A and B) is always an isosceles triangle (i.e. has two sides the same length). The bones 
of this reasoning are shown in Figure 2.

Figure 1. A triangle in a circle (1a) and diagram to find angle sum of triangle (1b)
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Figure 2. The bones of deductive reasoning

In most mathematical proofs, deduction is used more than once and more than one rule 
is used. For example, deduction is applied four times to show that the angles in a triangle add 
to 180°. Consider Figure 1b. Suppose a triangle has angles a, b and c. First we set up the proof 
by extending the side AC to E and drawing CD parallel to A.

First application of deduction: Angles a and e are corresponding angles (case). 
Corresponding angles on parallel lines are equal (rule). So a = e (result).

Second application of deduction: Angles b and d are alternate angles (case). Alternate 
angles on parallel lines are equal (rule). So b = d (result).

Third application of deduction: Angles c, d and e are angles on one side of a line (case). 
The angles on one side of a line sum to 180° (rule). So c + d + e = 180° (result).

Fourth application of deduction: a = e and b = d (case). c + d + e = 180° (rule). So, 
replacing equals by equals, a + b + c = 180° (result).

Words that indicate that deductive reasoning has occurred are ‘if … then …’, ‘therefore’ 
and ‘so’. On the other hand, if you ask your students to ‘solve’ something it is possible that 
they may need to engage in deductive behavior. But it depends on what they have to solve. For 
instance, if this is the first time that they have to solve a linear equation (2x + 1 = 7, say), then 
they will have to carefully deduce that 2x = 6 and then that x = 3 justified by doing the same 
operations to equal quantities. However, if they have done this many times the algorithm for 
solving linear equations will be embedded in their brain and they will solve it automatically. 
So with ‘solve’ the task is more important than the word.

Students can gain practice in deductive reasoning from an early age if teachers simply ask 
them to justify their statements. Even carrying out mental arithmetic such as working out 23 
+ 45 = 68 or 134 – 99 = 35 are good candidates for justification. At first there is no need for 
them to write down their arguments. All that is necessary is for them to verbally explain what 
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it is they are doing and why they can do it. Justifying statements is important at any point in 
schooling but as they grow older, students should be asked to write down their justifications 
more formally. Simultaneously they should be asked to write proofs for ever more difficult 
pieces of mathematics. 

Deductive reasoning seems to be naturally present in children (and even animals). 
They use it at an early age in their normal life. Enabling them to be more fluent in this 
type of reasoning provides them with a skill that can be used in areas outside mathematics. 
Mathematical deduction is particularly precise and explicit. 

Reasoning for patterns
When trying to find patterns, inductive reasoning, also called induction, is often 

used. (Readers who have studied advanced mathematics should note that this is not 
‘mathematical induction’.) This type of reasoning still uses case, rule and result (and usually 
more than one case and result). For deduction, the result is to be found. For induction, 
the rule is to be found. So induction uses the same three elements in a different order to 
deduction This is because we are trying to find rules (another name for pattern). We show 
this in Figure 3, which is in the context of trying to find a rule for the difference between 
consecutive square numbers.

Figure 3. The bones of inductive reasoning

Guessing a rule from only one case as in Figure 3 is obviously not wise, so usually many 
cases and results are examined to gather evidence for the rule. Induction is not always going 
to produce correct rules. The rule shown in Figure 3, for example, is easily shown to be false 
by considering other cases and results, such as

  22 – 12 = 3
  32 – 22 = 5
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  42 – 32 = 7
  52 – 42 = 9
The cases here are the differences between consecutive squares. The results are 

the numbers after the equals signs. Many rules could be inducted to fit this data and 
make predictions, for example, differences between consecutive squares are always odd  
e.g. ‘662 – 652 is going to be an odd number.’ But if you look a bit closer, you might induct the 
rule that the difference between consecutive squares is the sum of the two numbers, predicting 
correctly that 662 – 652 = 131. This is where induction stops. If we want to prove that our 
possible rule is true, we need to argue deductively. In this case, the result can be proved using the 
algebraic identity that  . Because the squares are of consecutive 
numbers,  and so . 

Induction is good for conjecturing (discovering) rules, but there is no guarantee that the 
rules that have been conjectured are in fact true. It is necessary to go back to deduction to 
settle this issue. But before results can be proved in mathematics they have to be discovered, 
so induction is essential. The more uses of the pair ‘case’ and ‘result’ you use, the better the 
chances of getting a correct rule.

‘Investigate’, ‘explore’, and ‘find’ are words that suggest induction needs to be used. They 
imply that several cases may need to be looked at and a rule found to describe the situation. 

Children can be encouraged to use and develop inductive reasoning by looking for 
patterns in mathematics. This can start by looking for patterns in number. For example, 
what is special about multiples of 5? (They end in 0 or 5.) It can then develop through 
such things as what is the next number in the sequence 4, 7, 10, 13, …? In later years 
students could conjecture what the m and c in y = mx + c stand for by examining cases  
(e.g. y = 2x - 6) and results (the graphs). Results proposed by induction should always be 
followed by answering the question ‘why?’ As we demonstrated in Figure 3, many rules can 
be supported by induction, but they are not all true.  

Once again, inductive thinking is not confined to mathematics. People are always 
looking for patterns in life. For example, ‘how does a person react to this kind of situation?’ 
And often this is followed by the question ‘why?’ that enables them to understand why the 
particular reaction occurs.

Reasoning for Ideas
The final types of reasoning that we consider here are the types that produce ideas. The 

first of these is described in the diagram in Figure 4, where there is another permutation of 
case, rule, result. This is abduction. This time it is the case that is wanted. This may seem a 
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strange thing to want to find out but think about any detective story you have ever heard. You 
have a murder, the result, and all the commonsense and scientific rules of how things work 
that you need. What you need is a ‘case’, in this case, the murderer. 

In Figure 4, the ‘result’ (the evidence of the size 9 boots) plus some commonsense and 
scientific ‘rules’ leads to a ‘case’. This abductive logic is far from watertight and there would 
need to be a lot more evidence to convict Jack. What we know for sure is the reverse deduction: 
that “if Jack is the murderer, and the murderer made the footprints, then the footprints are 
from size 9 boots”.  

Figure 4. The bones of abductive reasoning 

In mathematics what you often need is an idea. Something that might give you a direction 
to work forward from to solve the problem you are working on. You have some result plus all 
the rules of mathematics to use but you need an explanation, or something that will set you 
on the road to a deductive proof. Consider the example of the graph in Figure 5 that shows 
the weight of a mouse over 11 weeks. How can we explain the shape of the graph? Now the 
shape of this graph is a result and we have any of the rules of logic and mathematics to use to 
find the case – what happened to make this graph. There are lots of possibilities so we can’t be 
sure of the case that we abduct, but some possibilities are:

•	 The	mouse	had	a	baby at time T.

•	 The	mouse	had	an	operation	to	remove	a	large	tumour	at	time	T.

•	 The	mouse	was	made to run on a treadmill at time T.
To help determine which of these may actually happened, a few questions are in order. Is 

the mouse female? If not we can move immediately onto the second and third possibilities. 
Does the ‘weeks’ axis shown pass through the zero on the weight axis? If not, then the loss of 
weight might be relatively small compared to the weight of the mouse. In which instance, the 
third possibility might be likely. Like induction, abduction does not provide definite proof. 
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 Figure 5. The weight of a mouse over 11 weeks

Note that abduction differs from induction in that induction produces a rule while 
abduction produces a case, a statement only, nothing that is general. Abductive reasoning 
is about generating ideas none of which can be guaranteed to be true. They will, however, 
give a basis for possible deductive follow up work. The detective would later start with ‘if the 
murderer is x’ to see if all of the evidence is then consistent. A mathematician, a lot of whose 
work is like that of a detective, will use this new idea produced by abduction to see if it enables 
a result to be proved by deduction. 

A problem with abduction for teachers is knowing exactly when it has happened. In a 
problem solving situation our brains generate and reject a large number of possibilities. It is 
very hard to keep track of these. Unless we are in discussion with someone or they write down 
their thoughts, we are unlikely to even recognize that abduction has occurred. Words such as 

‘perhaps’, ‘maybe’ or ‘possibly’ may show abduction has occurred. But they may equally well be 
used in inductive or analogical situations.

One way to encourage the development of abductive reasoning, is to give students results 
and ask them where they came from. The classical case is ‘Fred got the number 8 from doing 
some arithmetic. How did he do that?’ As students go higher up the year levels ‘arithmetic’ 
could be changed to ‘algebra’ and later even ‘differentiation’. But we have also seen that giving 
students a graph and asking what produced it is also a good method for developing abductive 
reasoning, where the relevant rules are both mathematical (how the graph represents the 
quantities involved) and commonsense. Once again, this kind of thinking is not only valuable 
in school mathematics. If a factory is suddenly producing unwanted results, then abductive 
thinking can be used to suggest what the problem might be and therefore begin to fix it.

The fourth basic type of reasoning, and the second in this section, is analogical reasoning 
(English & Halford, 1995). This is not described using the elements of case, rule and result. 
Basically we have a situation that we need to resolve. If we know another situation that we 
can resolve and which is similar to our new situation, then the way of solving the old situation 
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might be used to solve the new one. We show this in Figure 6. In the diagram the new situation 
has similarities (represented by the squiggles) with the old one. We know how to solve the old 
situation. Perhaps the same or similar methods will solve the new situation.

Figure 6. The basis of analogical reasoning

Textbooks thrive on analogical reasoning. Typically they solve a particular problem, for 
instance, solve 2x + 1 = 7. Then they provide several problems of the ax + b = c type for 
the student to solve. The student uses the book’s method of solution to solve each of these 
particular problems, using analogical reasoning.

Using models to illustrate mathematical principles is another common use of analogical 
reasoning in school mathematics. If we divide a paper circle into quarters, and then halve the 
quarters, we can see that each resulting piece is an eighth of the whole circle. This is the ‘old 
situation’. In the ‘new situation’ of calculation with abstract numbers, which the students are 
to learn, we reason by analogy that 

One way to solve a problem is to look around for problems that are similar to the new 
problem in some way. Then the methods of the old problem might be tried to see if they can 
solve the new problem. So analogical reasoning can be used to find possible solution methods. 
Mathematicians use analogical reasoning to produce extensions and generalisations of 
problems. There they build onto an old problem and hope that the same method of solution 
will work in this new situation. 

Conclusion
This paper has looked at the four basic types of reasoning and given school level examples 

of them. They can be developed over a student’s school life by encouraging their use and by 
noting them explicitly as students progress through increasingly more advanced work. Being 
fundamental to both mathematics and life as a whole, these reasoning skills are important 
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and should be given attention in classrooms. The easiest way to do this is to include problem 
solving situations in normal classroom teaching and to emphasise why mathematical results 
are true. The special place of deduction and proof in mathematics is supremely important, but 
other forms of reasoning help to generate the patterns and ideas for solving problems. 
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Markov chains are mathematical models that use concepts 
from probability to describe how a system changes from one 
state to another. The basic ideas were developed by the Russian 
mathematician A. A. Markov about 100 years ago. These days, 
Markov chains arise in Year 12 mathematics. This paper offers 
a brief introduction to Markov chains. A notable feature is a 
selection of applications that show how these models are useful in 
applied mathematics.

Introduction
Markov chains are useful mathematical models that use concepts from probability and 

matrix algebra. In recent years, they have appeared as a topic in Year 12 mathematics subjects 
in Victoria. Yet many teachers may not have encountered these modelsduring their university 
education. The school text books set out the ideas required in the elementary methods used 
in Markov chains; see Coffey et al. (2009) as an example. We will not repeat these ideas here; 
rather we hope that this paper complements the material found in text books.

We have two aims in writing this article. First, the article provides a general introduction 
to the basic ideas in Markov chains that may appeal to teachers who have had little experience 
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in studying, or teaching, this topic. Second, the article contains a selection of applications of 
Markov chains across several fields of knowledge. We hope that these applications illustrate 
how Markov chains can be useful in contemporary applied mathematics. The basic ideas 
concerning Markov chains will become clearer through considering specific applications.

Definition of Markov Chain
For the purposes of this paper, we define a Markov chain as follows. More advanced 

texts will have more general definitions.
Definition: A Markov chain (MC) is a sequence of random variables  

with the following properties. For each
 

 , is defined on the sample space  and  
 takes values in a finite set . Thus,  S  Also, for  and 

 

 (1)
and the transition probabilities

 are independent of  . (2)
This definition is unavoidably technical. We will now tease out the definition in less 

technical terms.
Essentially we have a system that changes from one state to another over time. The various 

states of the system are contained in the set . The set  is called the set of states or state space 
of the Markov chain . If the set  has  elements, then  is called an  state Markov chain. 

In Year 12 mathematics, one would tend to consider only a 2-state Markov chain; that 
is, one in which  2. Although this simplifies the mathematics, applications of 2-state 
Markov chains appear to be stilted and contrived. More realistic applications involve more 
states as we will see below.

Usually   is the discrete variable that measures time. Thus  is the state of the system 
at time . In particular,  denotes the initial state of the system.

Condition (1) means that, if the system is in state  at time , then the probability that 
it will change to state  at time  does not depend on what happened in earlier times 

. This is usually called the “Markov condition”. One might say, loosely, 
that the next state of the system depends only on the present state and not earlier states.

Condition (2) means that, if the system is in state  at time  , then the probability 
that it will change to state  at time  does not depend on  . We say that the transition 
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probabilities  do not vary with time  . This is called the stationarity condition. It 
is usually not incorporated in the definition of a Markov chain, but since we consider only 
stationary Markov chains, we have included (2) as part of the definition.

In probability theory, we begin by considering independent random variables, for 
example the results of several throws of a die. Equation (2) makes it clear that Markov 
chains use conditional probabilities; the random variables in  may not be independent of 
each other. One of the fundamental aspects of Markov chains is that they lead us into the 
study of sequences of dependent random variables. 

These technical ideas will become clearer as one deals with the applications that follow 
in the next section.

Applications of Markov Chains
In this section, we present some applications that may spark the interest of Year 12 

students or their teachers. Von Hilgers & Langville (2006) have published another list with 
a different purpose. For each application, one might ask the following questions that have 
been proposed by Isaacson & Madsen (1976, p. 107).

•	 Is the choice of states in the set  appropriate for the application?
•	 Is it reasonable to assume that the Markov condition stated in equation (1) above 

holds?
•	 Is it reasonable to assume that condition stated in equation (2) above holds?
•	 Could the transition probabilitiesbe calculated, or at least estimated, in a sensible 

manner?

Markov’s Application
The study of Markov chains originated with a Russian mathematician, Andrei 

Andreyevich Markov (1856-1922). For a sketch of Markov’s life, see O’Connor and 
Robertson (2006); Seneta (2006) gives a more detailed account. One of Markov’s earliest 
works on the topic was presented in a lecture in St. Petersburg about a century ago in 1913 
and is now available in English (Markov (2006)). 

Up until Markov’s time, the main emphasis in probability was the study of sequences 
of independent random variables. Such a sequence would result from tossing a coin many 
times and obtaining a sequence of Heads and Tails such as “HHTHTTH ...” . The outcome 
of each throw is independent of earlier outcomes.
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Markov was interested in exploring sequences of random variables where this 
assumption of independence did not hold. He took some Russian text from Pushkin’s 
poetical work “Eugeny Onegin”, omitted spaces and punctuation marks, discarded two 
Russian letters that are not pronounced (soft-sign and hard-sign), and then classified the 
remaining letters as consonants or vowels. Thus the original text was reduced to a string of 
characters {c, v} where “c” means “consonant” and “v” means “vowel”. An equivalent process 
in English would be to convert “The quick brown fox” to “ccvcvvccccvcccvc”.

Does it appear that, in the sequence of c’s and v’s thus formed, there is some dependence 
between one character and the next? In more modern terminology, was the sequence 
generated by a 2-state Markov chain where the state space is {c, v}?

Such a model may have applications in linguistics, but it is unlikely that Markov had 
any particular application in mind. Of course, Markov did not use the term “Markov chain” 
but he does refer to this sequence as a “chain”.

Markov’s paper marks the beginning of the study of sequences of dependent random 
variables. Markov was interested in exploring probabilities such as the conditional 
probability that a letter was a consonant, given that the previous letter was a vowel. If the 
conditional probability that a letter was a consonant, given that the previous letter was a 
vowel, is different from the conditional probability that a letter was a consonant, given that 
the previous letter was a consonant, then there is dependence between successive characters 
in the sequence. 

We have included this example mainly for its historical interest. One might say that the 
study of Markov chains all started with poetry! However, one aspect of Markov’s work that 
may impress a reader of the 21st century is that he used a sample of 20,000 characters, and 
did all the data analysis by hand.

Health Care
Cancer is a major cause of death in Australia as in many developed nations. A great 

deal of clinical and scientific research has been aimed at improving our knowledge of this 
disease. Mathematicians have also contributed to this effort in different ways. Just over 60 
years ago, Fix and Neyman (1951) modelled the progression of breast cancer as a Markov 
process. For simplicity, we will frame their model as a Markov chain.

We can regard a person as passing through a series of four states during a lifetime. State 
1 is being alive and not being treated for cancer. State 2 is defined as being treated for cancer. 
State 3 is having died from cancer or the treatment (e.g., an operation). State 4 is having 
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died from some other cause, or simply lost to the study. We might record the state of a 
person every six months, thus setting up the process as a discrete-time Markov chain. Let us 
assume that the transition probabilities obey the Markov property.

It is clear how such a model could be useful. For example, if, over several years, the 
transition probability of moving from State 2 (under treatment) to State 1 (alive but not 
under treatment) in a six month period has increased, then we have made some progress in 
treating cancer patients.

This is a very simple model. Fix and Neyman (1951, p. 209) offer some sage advice. 
“Any conceivable mathematical model of any phenomena must involve simplifications. 
The greater the simplifications adopted, the further one must be from the actual processes 
studied. On the other hand while more detailed models may (but need not) approach the 
phenomena satisfactorily, they may appear so complex as to lose all usefulness”. 

Many researchers have sought to improve the model in the way it applies to cancer. 
One could develop a more complex model with more states by breaking up State 2 (under 
treatment) into several sub-states according to the stage that the breast cancer has reached. 
The model could be applied for different cancers. For example, Sherlaw-Johnson et al. 
(1994) describe the progression of cervical cancer using a Markov chain model. Indeed, 
theapproach could be used to describe the progression of any chronic disease.

We end this application with a note of warning. Although this is an important, 
contemporary application of Markov chains, one has to be careful in using it in a classroom. 
Some students in the class may find this example upsetting because there is someone close 
to them suffering from cancer.

Snakes and Ladders
Snakes and Ladders is a popular children’s game played on a board of 100 squares. We will 

assume that the reader is familiar with the game and we will not describe the rules in detail.
Imagine that you playing the game solo. You start with your marker off the board; we 

will call this state 0. Then there are 100 squares which we will call states 1, 2, … , 100. You 
move from state to state randomly by means of throwing a die, sometimes going up a ladder 
and sometimes sliding down a snake. We will not have any special rules for throwing a 6. Let 
us say that once you get to 100 or more then the game is over. So if your marker is on square 
97 and you throw a 5 then your game is finished.

Here is a bona fide Markov chain. There are 101 states namely 0, 1, … , 100. The system 
changes from one state to another by a random process. The transition probabilities are 
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constant during the game; thus condition (2) is satisfied. It is obvious that the Markov 
condition (1) holds. In other words, if you are in state  then the probability that you move 
to state  in the next move depends only on  and  and not on the states in any earlier stage 
of the game. We say that the game does not “remember” earlier parts of the game.

By contrast consider the game of chess.Although chess does not involve randomness, 
it has anon-Markovian aspect. For example, you cannot castle if you have moved the King 
or Rook in some earlier stage of the game. Thus, in chess, earlier moves can have an impact 
on the next move.

Snakes and Ladders is a useful example for illustrating the basic concepts of Markov 
chains in the classroom. School text books focus on 2-state Markov chains for simplicity. 
Snakes and Ladders is an example of a Markov chain that is readily understood even though 
it has 101 states, and meets the definition of a Markov chain exactly. Other authors have 
written about this game as a Markov chain; see, for example,Johnson (2003) and Cheteyan 
et al. (2011); note that, in the US, “Snakes and Ladders” is known as “Chutes and Ladders”.

Searching the WWW
Searching the World Wide Web is part of everyday life in 2012. In the early days of 

the WWW there were several competing search engines. But then Google emerged as 
the leader. One reason for the success of Google is the algorithm that underpins its search 
engine. The algorithm is known as PageRank and it is an application of linear algebra and 
Markov chains. An account of the history behind this development and some technical 
details can be found in Langville & Meyer (2006). In this section, we explain the connection 
between this search algorithm and Markov chains; our explanation is based on Langville 
& Meyer (2006). 

Suppose that there are  pages on the WWW; obviously this is a very large number. 
We can regard surfing the WWW as a realization of a Markov chain. A surfer starts at one 
page, say Page 1, and then jumps to another page, say Page 2, by following the links on Page 
1. If we assume that the surfer chooses a link at random from the links on Page 1, then we 
can assign transition probabilities to the possible jumps from Page 1. The size of this   
matrix is huge. However, most of the entries are zero because any given page is linked to 
only a small number of other pages. We say that the matrix is sparse.

Although Sergey Brin and Larry Page, the creators of the PageRank algorithm, did 
not mention Markov chains in their original papers, these days the method is viewed as an 
application of a Markov chain. Further details can be found in Langville & Meyer (2006).
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Marketing
Mathematical models play an important role in business analysis. In this section we 

present an example of the application of Markov chains to a problem in marketing research 
which was inspired from reading Deming and Glasser (1968). 

A telephone company offers its customers several plans for their mobile phones. The 
company knows the distribution of its customers currently across all the plans and it is 
interested in forecasting the distribution in the next two years. The Markov chain may be a 
suitable model for the setting of this problem.

The set of states would be the set of plans. The plans may include “pre-paid” or 
“cancelled” as well as 6-month plans and 12-month plans. The state of each customer might 
be recorded every month.

There may be rules that prevent transferring between certain plans; in such cases the 
transition probability would be zero. Other transition probabilities could be estimated 
from recent data. 

The distribution of customers across various plans could be determined from the initial 
distribution and the matrix of transition probabilities. Since this industry changes rapidly, 
one might be safe in using this approach for short-term forecasting.

We recommend the paper by Deming & Glasser (1968) because it has been written 
with considerable clarity.

Conclusions
We have presented a brief introduction to Markov chains to assist teachers who have 

had little experience with them.
“What is this good for?” is a common question posed by students studying mathematics. 

The applications of Markov chains presented in this paper can be used to answer this 
question. Many applications of these models involve a large number of states. However, 
the basic ideas involved in conceiving a Markov model to describe a game like Snakes and 
Ladders or searching the WWW are simple in spite of the large number of states.We hope 
that our selection will enhance discussion of applications in the classroom.

An important theme in the mathematical subjects in the Australian curriculum is to 
make connections between mathematics and the wider world. The study of Markov chains 
can assist in making such connections.
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Mathematica is a computational software package that can 
be used as a powerful teaching and learning tool. It helps 
demonstrate concepts, creates support materials, assessment tasks, 
and presentations, and engages students in interactive learning, 
exploring and developing an understanding of mathematical 
concepts. Apart from basic and more complex calculations similar 
to the features of other CAS tools, Mathematica can be used to 
produce animations and manipulations, slide shows, interactive 
tests and other live documents. A free trial version of Mathematica 
can be downloaded from Wolfram Research(1).

Starting on Mathematica
The teaching and learning of mathematics is becoming increasingly challenging with 

the expectation that classroom teachers provide ever more engaging lessons and cater for the 
diverse learning styles of students. In the search for tools to support the understanding of 
mathematical concepts and knowledge, Mathematica has proven to be very powerful for both 
the teaching and learning processes. Mathematica has four main features that are required for 
correct syntax:
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1. There are no spaces between characters.
2. Most commands start with a capital letter. If a command is made up of two or 

more words, each word starts with a capital letter, eg. PlotStyle
3. Commas are used to separate arguments.
4. To evaluate a cell always press Shift + Enter. 

Lesson Starters Years 7 – 10
In this section there is a selection of three tasks at the junior level, years 7-10. They can be 

used as they are or can be adapted to suit the needs of the reader.

Prime Numbers Investigation
This investigation is suitable for year 7 students to explore the nature of prime and 

composite numbers, and the concept of factors. 

Example 1
a Find all prime factors of 9.
Input line: FactorInteger[9] … gives all the prime factors of 9
Output line:{{3,2}}, where 3 is the prime factor and 2 is the power.
 

 

Figure 1. Screen shot of input and output lines

b Factorise all integers from 2 to 11 in table form 
Input line: Grid[Table[{1+n,FactorInteger[1+n]},{n,1,10}]] 
                 … arranges all the factors of the integers from 2 to 11 in a table.

 

Figure 2. Screen shot of input and output lines
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c Find prime numbers.
Input line: Table[Prime[n],{n,50}]
        … lists the first 50 prime numbers.

 

Figure 3. Screen shot of input and output lines

This investigation can be extended to suit the purpose of the lesson and the group of 
students taught.  

Introduction to the Sum of the Interior Angles of a Triangle
This task was designed as a teaching lesson to prove that the sum of the interior angles of 

a triangle is 180°. It is suitable for year 7 or 8 students.

Figure 4. Screen shots for the demonstration: The Sum of the Interior Angles of a Triangle 
Equals 180 Degrees by Paper Folding (HREF1)

In the second part of this lesson Mathematica is used to solve linear equations involving 
finding an unknown angle given the magnitudes of the other two angles.

Example 2 
In a triangle ABC, ∠ B = 46°, ∠ C = 75°. Find the magnitude of ∠ A.
The Mathematica command used to solve the equation A + 48° + 27° = 180° is:
Input line: Solve[a+48+27==180,a] … notice the use of double equals signs 
                  instead of a single equals sign. The use of “,a” is to indicate the 
                  variable of the equation.
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Figure 5. Screen shot of input and output lines

Statistics Summary
This task was designed as a revision of the statistical concepts learnt for years 9 or 10 

students as required.

Figure 6. Screen shots of input and output lines for basic stem and leaf plots and back-to-back 
stem and leaf plots

Figure 7. Screen shots of input and output lines for a 2D representation of a histogram and a 
3D representation of the histogram

Figure 8. Screen shots of input and output lines used to evaluate the mean, median and quartiles
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    Figure 9. Screen shots of input and output used for box and whisker plots

Lesson Starters Years 10 – 12

In this section there is a selection of four tasks at the senior level, years 10-12. They can be 

used as they are or can be adapted to suit the needs of the reader.

Looking at Parabolas Demonstration

This task was designed as a teaching-demonstration lesson. This lesson is suited to years 9, 

10 or 11 as required. The manipulation constructed in Mathematica, looks at the behaviour of 

quadratic functions of the form g(x) = a(x + h)2 + k, investigating the effect of the constants 

a, h, and k on the shape of the function and its position in the Cartesian plane relative to the 

function f(x) = x2.

The commands used in this manipulation are becoming more sophisticated with the 

introduction of the range of the function, PlotRange→{-10,10}, and different colours 

for the two graphs, Black, for f(x) = x2 and {Green,Thick,Dashed} for the function  

g(x) = a(x + h)2 + k.

Manipulate[Plot[{x2,a(x+h)2+k},{x,-5,5},PlotRange→{-10,10}

 PlotStyle→{Black,{Green,Thick,Dashed}}],

 {a,-3,3,0.5},{h,-3,3,1},{k,-3,3,1}]
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Figure 10. Screen shots of output lines for the manipulation of g(x) = a(x + h)2 + k

Each of the constants a, h, and k can be manipulated individually or concurrently. Due 
to its visual and interactive features, this manipulation provides a suitable introduction to 
transformations of functions.

Average and Instantaneous Rates of Change
This task was designed as a teaching-demonstration lesson for units 1 and 2 Mathematical 

Methods, providing interactive visualisation of the average and instantaneous rate of change. 
It can also be used as revision in units 3 and 4 Mathematical Methods and introduces the Slide 
show feature of Mathematica. 

Figure 11. Screen shots for the demonstrations: Average Rate of Change Exploring More 
Functions (HREF2) and demonstrations: Instantaneous Rate of Change (HREF3)
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Integral Calculus
This task was designed as a summary lesson of Integral Calculus and the corresponding 

Mathematica commands required for Units 3 and 4 Mathematical Methods students.
The three methods of finding the area under a curve using approximations are shown in 

Figure 11. The rectangle approximation using the “leftend point estimate” is calculated using 
the command:
RiemannSum[function,{x,xmin,xmax},n,”Left”,Estimate->Area], 
where n represents the number of rectangles. Similarly, the rectangle approximation using the 

“rightend point estimate” is calculated using the command:
RiemannSum[function,{x,xmin,xmax},n,”Right”,Estimate->Area], 
where n represents the number of rectangles.

The third estimate is the trapezium estimate with the command:
RiemannSum[function,{x,xmin,xmax},n,”Trapezoid”,Estimate->Area], 
where n represents the number of strips.

Figure 12. Screen shots of input and output lines for the a “leftend point estimate”, b “rightend 
point estimate”, c “trapezium estimate”

Basic integration is being evaluated using the Classroom Assistant
->Calculator->Advanced->\[Integral](function)dvariable



Carmen Popescu-Rose, Karen Reid

55

Figure 13. Screen shots of input and output lines for integrals of various functions

To represent the area under a curve and the area between two curves, the following 
commands are used:
Show[Plot[function,{x,xmin,xmax}],Plot[function,{x,xlowerlimit,xu
pperlimit },Filling→Axis],PlotRange→{ymin,ymax}] and

Show[Plot[{function1,function2},{x,xmin,xmax}],Plot[{function1,
function2},{x,xmin,xmax},Filling→{1→{2}}],PlotRange→{ymin,ymax}]

Figure 14. Screen shots of input and output lines for integrals of various functions

Equations of Circles
This task was designed as a teaching, learning and practice lesson in which students are 

required to complete a series of exercises after an introduction to the equation of a circle in 
standard and non-standard forms. It also uses the Slide show feature of Mathematica and 
grouping of cells. 
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Figure 15. Screen shots with text, slides and cell groupings

The end of lesson exercises are designed to provide feedback and practice of the topic 
taught and can be used as a form of assessment as learning.

 

Figure 16. Screen shot of part of the Exercises

Conclusion
Mathematica is a powerful computational tool which allows the user to produce 

quality, interactive and visual classroom activities covering a variety of tasks; from teaching-
demonstration type of lessons, to investigations, slide shows, interactive manipulations, 
interactive assessment tasks and much more. Once started on Mathematica, the wide range of 
resources available makes the teaching and learning of Mathematics stimulating and engaging.
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This paper addresses ‘Technological Pedagogical And Content 
Knowledge’ (TPACK) the specialized knowledge that teachers 
must acquire in order to use technology in their instructions 
innovatively. The impact of technology on the students learning 
process is then discussed based on the theory of distributed 
cognition. Examples to illustrate the application of technological 
pedagogical and content knowledge with the use of the graphing 
calculator and dynamic geometry software to create innovative 
instruction are also provided in the paper.

Introduction
‘Innovation’ is the buzzword of our times (Lessem & Schieffer, 2010). Innovation is 

defined by Gallo (2011) author of the book, The innovation Secrets of STEVE JOBS as 
“a new way of doing things that results in positive changes”. Translated to the pedagogical 

arena, this implies new ways of teaching that results in positive changes in the learning 
process and leaning outcome of the students.

Today the enhancement in educational technology provides every teacher a powerful 
means to approach old content in a new way that can result in positive pedagogical 
changes. However, technology on its own is not capable of delivering innovative lessons 
that can result in positive changes in students’ learning. Technology itself does and will not 
impact students’ learning. The power of technology lies in the intersection of technology, 
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pedagogy and content (Greenhow, 2009) - the power of technology lies in the teacher. 
As Shulman (1986) stated teachers have specialized knowledge that sets them apart from 
other professions. Shulman explained that a brilliant mathematician would not necessarily 
make an excellent teacher. He argued that an excellent teacher has special knowledge which 
lies at the intersection of content and pedagogy and hence he called this special knowledge 
Pedagogical Content Knowledge. 

Similarly, Mishra and Koehler (2009) claimed that quality teaching is not a process 
of copying a few instructional techniques. Instead it emerges from deep thinking of 
the teacher in conjunction with the discipline that has to be taught making content 
intellectually accessible to the students. Integrating technology adds a new knowledge 
and hence Shulman’s framework has been updated and the special knowledge when using 
technology is called ‘Technological Pedagogical And Content Knowledge (TPACK)’ (see 
framework in Figure 1) (Mishra & Koehler, 2009).

Figure 1: TPACK Framework

Today mathematics teachers can be innovative teachers by using computer technology 
(referred in this paper as technology). However, the impact of their innovative mathematics 
lesson with the use of technology in the teaching and learning sessions will depend on their 
Technological Pedagogical and Content Knowledge. 

Many researches in the past have shown that the use of technology has had positive 
effects on students learning (Obara, 2010; Herman & Laumakis, 2009; Nemirovsky, 1994; 
Ainley, 1994; Thornton & Sokoloff, 1990; Mokros & Tinker, 1987; Brasell, 1987). To 
understand the success of learning with the use of modern technology, I turn to the theory 
of distributed cognition
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Distributed Cognition and the use of Technology
The theory of distributed cognition was developed by Ed Hutchins and his colleagues 

at University California, San Diego in the mid to late 80s (Rogers & Scaife, 1997). This 

theory claims that cognition is better understood as a distributed phenomenon, in contrast 

to the traditional view of cognition as a localised phenomenon that is best explained in 

terms of information processing at the level of the individual. 

Salomon, Perkins and Globerson (1992) adopting this phenomenon summarised 

cognitive effects when using technology as “effects with technology obtained during 

intellectual partnership with it, and effect of it in terms of the transferable cognitive residue 

that this partnership leaves behind in the form of better mastery of skills and strategies.”

To explain distributed cognition as “effects with technology”, I turn to Döfler’s (1993) 

view of cognitive processes (which also adopts Hutchins’ view of cognition). Döfler (1993) 

suggested that cognitive processes be viewed as a system made up of the individual, the 

whole context and the multiple relationships between them. Thus, the cognitive system 

has the subject (the individual) and the available cognitive tools which would aid the 

thinking process. Cognitive tools can be paper and pencil, calculators, computers, graphing 

calculators, television, etc. Döfler (1993) compared the thinking process to doing physical 

work stating that ‘There is no such thing as “pure” work without using any tool’. To attain 

the specific goals, one has to use tools in an appropriate organized manner. To illustrate 

the thinking process as a system, Döfler (1993) used the artist as an analogy. Döfler stated:

The skill and the intelligence of an artist like a painter are more 

appropriately viewed as being realized by the whole system consisting 

of the human individual and all his tools. These tools do not just 

express ideas and imaginations pre-existing in the mind of the artist and 

independently of the tools. Rather, the system of painter, brush, colours, 

canvas, etc. realizes the painting (Döfler,1993, p. 173)

The thinking process can be explained in terms of ‘distributed cognition’. Distributed 

cognition refers to the earlier described ‘system’ – the individual and the available tools 

where cognition is viewed as distributed over them (Döfler, 1993). According to this view 

of thinking, to solve a given mathematical problem, the individual can employ the available 

tool and his or her own mind to solve it.
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To explain distributed cognition in mathematics, let us take for example the drawing 
of a straight line of a specific length, for example 5 cm in length. Using a ruler one can 
produce the 5 cm straight line. The individual need not have the skill of drawing a straight 
line unaided (that is free hand), nor does the individual need a mental representation of 
5 cm. If the use of a ruler is not permitted, then fewer people will be able to draw a 5 cm 
straight line if they lack either the skill to draw a straight line or the appropriate mental 
representation of a length of 5 cm. With the use of a ruler, cognition is distributed in the 
process for producing a 5 cm straight line – the mental representation of 5 cm and the skill 
to produce a line which is straight are taken over by the ruler and the individual has to have 
knowledge about how to use a ruler to produce the 5 cm straight line.

To explain the “effects of technology”, I turn to Pea’s (1985) view that ‘intelligent’ 
technology “offloads” part of the cognitive process as a result of distribution of cognition, 
allowing the user to focus cognitive resources elsewhere. Pea claims that over time the user 
will develop cognitive skills to accomplish many of the cognitive processes demonstrated 
when using technology and would be capable of demonstrating these skills without any 
longer requiring the aid of the technology. 

Let us refer to identifying acute, obtuse and right angles based on the respective 
definition of each type of angle. Using a protractor enables an individual to measure a 
given angle between two lines and identify the category of the angle. Since the protractor 
provides the measure of the angle -‘intelligent’ technology “offloading” part of the cognitive 
process as a result of distribution of cognition, the user is allowed to focus cognitive 
resources elsewhere - the individual can observe the appearance of the various angles. Later 
the individual would be capable of recognizing the different types of angles without any 
longer requiring the aid of the protractor because he/she has developed the cognitive skill 
to identify the category of the angle.

Similarly using technology to draw graphs or geometric objects or perform other 
mathematical tasks affords students more time to focus on the actual objective of the 
learning session. This then would enable students to expend their cognitive processes to 
develop the desired skills and concepts of the lesson.

Let us examine some examples of how the distribution of cognition using appropriate 
TPACK enabled me to create innovative mathematics lessons which transformed the 
content in a way that made it intellectually accessible to the students and enabled them to 
acquire the desired skills and concepts.

Teaching and Learning Mathematics with Technology
This section describes specific teaching and learning activities which have been used 

and proved to be successful, to illustrate how the distribution of cognition with the 
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application of Technological Pedagogical and Content Knowledge provided to create 
innovative lessons. 

Using the TI-84 Plus Graphing Calculator to Develop Stu-
dents’ Understanding of Scales

In the Malaysian mathematics curriculum, ‘graphs of functions’, is a topic learnt in 
the secondary level (students aged 16-17). Graphs however are drawn on paper and the 
scales to construct graphs illustrating the covariance of two variables are often given and 
students mechanically use the given scales and complete the construction of the graphs. 
To change scales and redraw a graph is time consuming and hence how a scale should be 
adjusted to fit a graph or diagram is poorly understood by students even after completing 
the topic. Using technology certainly made a difference among my Bachelor of Education 
students to explore scales in a fun manner. They explored scales when graphing parametric 
trigonometric functions which created interesting shapes.

Figure 2: Parametric equations Figure 3: Graph of Parametric Equations

Figure 4: Window Setting for Figure 5 Figure 5: Graph based on  Figure 4 setting

Figure 6: Window Setting for Figure 7 Figure 7: Graph based on Figure 6 setting
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The activity started by providing each student a graphing calculator and showing 
Figure 2 followed by Figure 3 projected on a screen in class. Then the students were asked 
to guess the shape displayed. All the students claimed that the graph was too small to make 
out the shape. This then led to request for suggestions on how to make the graph bigger. 
The first response was ‘zoom-in’, but when they tried it, it proved to be futile. Then one 
student suggested changing the scale. Hence I taught them to use the window settings. 
Students then explored various scales and had discussions as to how to produce a bigger 
fish. The activity became more interesting to the students when they saw a fish instead of 
a boring line graph. The students had fun trying many different scales and very quickly 
grasped how to make the graph bigger or smaller. They also learnt to change the range so 
that the graph was in the centre of the screen. The power of the technology is obviously 
due to the distribution of cognition over the graphing calculator and the student. While 
the graphing calculator took over the cognitive process of producing and positioning the 
graph according to the scales and range keyed in, the students focused on how to adjust the 
scale to obtain a maximum size graph to fit the screen and to adjust the range to centre the 
graph on the screen. 

Giving students then a graph on paper which occupied a small corner of the graph 
paper immediately produced responses commenting on the inappropriateness of the 
scale and range and intelligent suggestions were made confidently and accurately to 
reconstruct the graph to fit the entire page and position the graph more centrally. Hence 
Pea’s (1985) claims that over time the user will develop cognitive skills to accomplish many 
of the cognitive processes demonstrated when using technology and would be capable of 
demonstrating these skills without any longer requiring the aid of the technology proved 
to be valid. 

In the above lesson the interest of the pupils was drawn because the content was 
transformed in a way that made it intellectually accessible to the students, that is, effective 
Technological Pedagogical and Content Knowledge had been employed to conduct an 
innovative lesson which had a great impact on pupils’ learning of scales. The meaningful 
understanding of the knowledge that the students had acquired when using the technology 
enabled them to apply it even without the use of technology. If the students had been 
merely provided with the graphing calculator and asked to construct line graphs according 
to structured instructions as provided in the graphing calculator guide book on how to 
draw graphs, the lesson would replicate the traditional instructional practice and would 
have made no impact on the learning process. Hence the effectiveness of the use of the 
technology lies in the teacher’s Technological Pedagogical and Content Knowledge and 
not solely on the technology.
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Using the CBR to Understand Distance-Time Graphs
This activity focused on the use of the Calculator Based Ranger (CBR) a data collecting 

device to enhance lower secondary students understanding of distance - time graphs. The 
first part of the lesson allowed students to explore distance - time graphs using the CBR. 
Students were instructed to walk at different speeds and observe the graphs displayed on 
the screen. This enabled them to deduce that the steeper the slope the greater the speed. 
They also realised that a horizontal line represented no change in distance from the ranger 
and a negative gradient graph indicated starting away from the CBR. 

The second part of the lesson involved interpreting and re-creating given graphs. 
Students were challenged to produce graphs like the ones given in Figure 8 using the CBR. 
The process of discussion to produce the graphs demanded a sound understanding of the 
distance-time graph. Students were soon able to reason out how to produce the challenging 
graphs and also why some of the graphs were impossible to produce.

Figure 8: Challenging and Impossible Graphs

The final activity of the lesson challenged students to produce a horizontal graph as 
shown in Figure 9, with a person moving. 

Figure 9: Horizontal Graph
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Their experience when trying to produce a circular graph in the earlier activity 
enlightened them on producing the graph by rotating the CBR and walking in a circle 
to produce a horizontal line graph with the person moving. Another group of brilliant 
students went on to tie the CBR at one end of a metre rule and position one group member 
at the other end. They walked the group member about the class to produce a horizontal 
graph. They explained that as long as the distance between the CBR and the group member 
was constant, the graph would be a horizontal line because time was passing but there was 
no change in distance.

Again in this activity, the distribution of cognition between the technology and the 
students enabled the students to focus on understanding the distance-time graphs, rather 
than been bogged down to merely constructing the graphs from meaningless tables of values. 
Hence technology provided a means for a teacher to present the content in a way that made 
it intellectually accessible to the students and hence produced an innovative lesson for 
the understanding of distance-time graphs. Again application of effective Technological 
Pedagogical and Content Knowledge to design instruction created an innovative lesson 
which equipped students with knowledge which they would be able to apply even without 
the technology, that is, to be able to interpret distance-time graphs and determine which 
distance-time graphs are possible and why. 

Using Dynamic Geometry Software to Understand the For-
mula for Area of a Triangle 

Figure 10: Dynamic geometry software to obtain the formula for the area of a triangle.
This activity started with a rectangle displayed on the screen. The rectangle was drawn 

using the software. The students who were lower secondary school students were requested 
to recall the formula for area of a rectangle that they had learnt in the primary school. The 
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software was used to measure the length and breadth of the rectangle and the students were 
requested to calculate the area using their formula. Their answers were then checked using 
the software which displayed the area in square centimetres as shown in Figure 10. Then 
dividing the rectangle into two equal parts produced two right angled triangles. Students 
were asked to suggest a formula for each of the triangles and explain their formula. They 
reasoned that the area of each triangle was half the area of the rectangle. Hence the area of 
the triangle formula was obtained. To further investigate if their formula for the area of 
triangle was correct, they were instructed to drag the sides of the rectangle and record the 
changing values of the dimensions (length, breadth and area) of the rectangle and triangle. 
They then calculated the area of the respective triangles from the values of the length and 
breadth using their formula for the area of triangle and compared their worked out answers 
with the data displayed . This assured the students that their formula for area of triangle 
was correct. 

The next part of the activity was to help students to realise that the area of a triangle 
remains unchanged as long as the height and base remains unchanged and that this is 
irrespective of the shape of the triangle. For this the diagram in Figure 11 was created. Point 
A moves on the line PQ and the two line segments PQ and RS are parallel. The perpendicular 
distance AD is the height of the triangle. The students realised that as long as the height 
and the length of the base remained unchanged the area remained unchanged although 
the perimeter changed with the shape of the triangle. They were then asked to identify 
the height of the triangle if the base was AC or AB. Using the software the appropriate 
perpendicular lines were dropped from the respective vertices and the appropriate heights 
and bases were measured. The area of the triangle was then calculated using the formula. 
The objective of the activity was achieved.

Figure 11: Dynamic geometry software to explore area of triangle formula
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Finally students were asked questions on paper to find the area of given triangles and 
all the students were able to answer all the questions without any difficulty.

The technology sped up the exploration process by taking over the process of drawing 
and measuring the triangles with a ruler. Hence, the distribution of cognition between the 
technology and the students enabled the students to focus on discovering and understanding 
the formula of the area of a triangle rather than been told the formula or merely cutting 
out one triangle and assuming that the formula fits all triangles. They were also able to 
explore and realise that the area of a triangle can be calculated using any of the sides as the 
base as long as the corresponding height was substituted in the formula. Again the use 
of technology equipped students with knowledge that could be applied even without the 
technology. The activities using technology enabled the creation of an innovative lesson 
for discovering and understanding the formula for area of a triangle by the use of effective 
Technological Pedagogical and Content Knowledge. 

Using Dynamic Geometry Software to Demonstrate Applica-
tion of the Isometries of the Plane in a Creative Manner

In the teachers’ training institutes in Malaysia, students are required to demonstrate 
application of the isometries of the plane in a creative manner by producing an Escher type 
tessellation in their Geometry course. When students use the paper medium they produce 
simple uninteresting geometrical figures because of the difficulty to cut paper shapes 
accurately and paste them as desired. The process to produce an Escher type tessellation 
can also be time consuming in the paper medium. 

Teaching and learning isometries of the plane using a dynamic geometry software 
equipped the students with a tool that made it convenient for them to demonstrate their 
creativity when applying the isometries of the plane to produce an Escher type tesselation. 
Figure 12 shows an example of a motif which was created from a square using translation.

Figure 12: Motif created from a square using translation.
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The motif in Figure 12 was then translated using appropriate vectors to cover the plane 
(see Figure 13).

Figure 13: Tessellation created from the motif in Figure 9
In this activity the teacher shared her technological and content knowledge through 

her Technological Pedagogical and Content Knowledge with her students. The students 
having acquired the skill to use the technology to perform the isometries of the plane were 
able to apply these skills and concepts to be creative. The students’ ideas were expressed 
clearly because the thinking process of the student was aided by the available cognitive tool 
(the dynamic geometry software).

Hence creativity was possible because of the distribution of cognition over the student 
and the available tool. Technology took over a large part of the cognitive process which 
involved menial steps (such as drawing, cutting and pasting shapes). This afforded the 
students more time to focus on applying the learnt mathematical knowledge, in this case 
the isometries of the plane.

In this example, TPACK of the teacher equipped the students with both, the content 
and technological knowledge. Hence this activity in addition to presenting the content in 
an intelligently accessible way, also educated the students to use technology to apply the 
knowledge acquired in a creative manner.

Conclusion
The use of technology to produce innovative instructions can be demonstrated. 

However, the effectiveness of the technology lies in the teacher’s Technological Pedagogical 
and Content Knowledge. For a teacher to be able to use technology effectively in lessons, 
he or she must have the required technological knowledge. Then using the acquired 
technological knowledge in collaboration with pedagogical content knowledge will 
determine the extent to which the content of the lesson is presented in an intellectually 
accessible manner to the students and then and only then can the technology have a great 
impact on the students learning process. 
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MATHEMATICATM: PANDORA’S BOx 
OR CLASSROOM EMPOWERMENT?

Brenton R Groves

Independent Researcher

There are several economic ways for teachers and students to 
acquire a copy of Mathematica™ for their own use. Learning 
to program Mathematica™ is identical to becoming fluent in a 
foreign language; one must learn the vocabulary and grammar. 
Mathematica™ has an advantage in that each ‘word’ has one 
meaning and the grammar is extremely flexible. Wolfram/
Alpha produces Mathematica™ syntax from ordinary English 
requests. This paper contains a number of simple demonstrations 
of programming, the Modify process, and slide show generation. 
It will be available on the web so teachers can investigate the 
material at their own pace.

Methodology
IMPORTANT: Download this PDF format presentation on to your hard disk from 

the following URL through any search engine
http://dl.dropbox.com/u/49383304/MAV.2012.Programming.pdf
The reason for using the PDF file on your own disk is that the blue URLs can then be 

downloaded with a Ctrl/Click. This saves a lot of typing.

Mathematica Offers
Course materials development requires Mathematica 8. Check with your school to see 

if they have a site licence.
Wolfram 30-day free offer: http://www.wolfram.com/mathematica/trial/ 
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Wolfram Faculty Program Membership Portal: 
http://www.wolfram.com/faculty/benefits.html
•	 Free three-month Mathematica Home Edition license to become familiar  

with Mathematica
•	 Access to the Wolfram Faculty Program Forum 
•	 Free downloadable courseware and teaching materials to use in your classes
•	 Success stories from Mathematica Enthusiasts to learn how they have enhanced 

their classrooms with Mathematica
If you are serious about using Mathematica in curriculum development it is strongly 

recommended that you join the Faculty Program. 

Simple Tutorial Videos off The Web –  
Mathematica is not required

The URL for these videos has the format http://www.wolfram.com/broadcast/video.
php?channel=86&video=xxx

Each title has the running time followed by its xxx number.  For example: Jon 
McLoone, Mathematica Basics (12:15 – 489) can be downloaded from

http://www.wolfram.com/broadcast/video.php?channel=86&video=489
Cliff Hastings’s 8-Part screencast series Getting Started with Mathematica: runs  

from 862 to 869.
•	 Part 1: how to get started using notebooks. (4:12 - 862)
•	 Part 2: different methods for getting started with Mathematica. (10:14 - 863)
•	 Part 3: getting started with basic calculations.(7:58 - 864)
•	 Part 4: getting started with basic graphics. (9:45 - 865)
•	 Part 5: how to make interactive graphics and models (5:03 - 866)
•	 Part 6: how to utilize data. (3:48 - 867)
•	 Part 7: how to create presentations (3:38 - 868)
•	 Part 8:building an example presentation complete with calculations, graphics, and 

data (4:02 - 869)
All videos can have a soundtrack in Chinese, Japanese and Spanish as well as in English.

The Virtual Book 
The Virtual Book is a browsable electronic collection of all he Mathematica tutorials, 
grouped according to functionality.
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 If they were made into a book, it would be over 11,000 pages long! ‘How to’ use the 
Virtual Book and a short video can be found at:

http://reference.wolfram.com/mathematica/howto/UseTheVirtualBook.html Direct 
link to the video:

http://www.wolfram.com/broadcast/screencasts/howtousethevirtualbook/?w=816
&h=588 (1:12 minutes)

Beginner’s Self-Paced Study Course
The beginner’s self-paced study course can be found at:

http://www.wolfram.com/training/courses/edu001.html
Learn how to improve your classroom experience with Mathematica. This course gives 

a tour of functionality relevant to teaching and learning, along with case studies and best-
practice suggestions for course integration. Topics include making your classroom dynamic 
with interactive models and a survey of computation and visualization capabilities useful 
for teaching practically any subject at any level. Level: Beginner This course is available on 
demand (33:44 minutes). It is free.

Syllabus for Self-Study
•	 Download the Tutorial References notebook at http://dl.dropbox.

com/u/49383304/TutorialReferences.nb
•	 Save TutorialReferences.nb to your hard disk. 
•	 Click on TutorialReferences.nb to open the notebook in Mathematica 8.
•	 Click on the Help pallett and then on Virtual Book. The screen should look like 

Figure 1.
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Figure 1. Self-study and Virtual Book Contents

Paste each title in to the Virtual Book search box. These notebooks can be converted 

into interactive lessons by clicking on ‘Delete All Output’ in the ‘Cell’ palette. All Virtual 

Book notebooks are available as web pages if you do not have Mathematica, but they are 

not interactive.

Advanced Programming

How to Create a Lecture Notebook 

Mathematica’s slide shows are ideal for use in the classroom, and can very quickly be 

leveraged as a lesson or lecture. Any presentation created with Mathematica can display 

live interactive content that you can alter, and even create, while presenting. This lets your 

classes be truly dynamic and provides an unparalleled opportunity to involve your students 

in the material.
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How to Create a Slide Show 
You can create and present slide shows directly from within Mathematica. Mathematica 

provides an integrated workflow from initial experimentation to final presentation. 
Mathematica-based presentations can contain interactive interfaces and live computations, 
letting your audience see the effects of changes to parameters in real time.

Tutorial/Introduction To Manipulate 
The single command Manipulate lets you create an astonishing range of interactive 

applications with just a few lines of input. Manipulate is designed to be used by anyone who 
is comfortable using basic commands such as Table and Plot: it does not require learning 
any complicated new concepts, nor any understanding of user interface programming ideas.

The output you get from evaluating a Manipulate command is an interactive object 
containing one or more controls (sliders, etc.) that you can use to vary the value of one or 
more parameters. The output is very much like a small applet or widget: it is not just a static 
result, it is a running program you can interact with.

This tutorial is designed for people who are familiar with the basics of using the 
Mathematica language, including how to use functions, the various kinds of brackets 
and braces, and how to make simple plots. Some of the examples will use more advanced 
functions, but it is not necessary to understand exactly how these work in order to get the 
point of the example.

Comments
A PowerPoint slide show of this paper with images and teaching notes, which was 

presented at the MAV 2012 Annual Conference, can be downloaded from: 
http://dl.dropbox.com/u/49383304/MAV.2012.Programming.PPS
Comments and criticisms on this paper are welcome and will be acknowledged. Email: 
grovesbr@optus.net.au 

Disclaimer
Much of the text in this presentation comes directly from the Wolfram Research Inc data 
base and is used as fair comment for teaching and research.
I have no financial gain from the sale and use of the Mathematica program in any context. 
The education division of Wolfram Research in the US supplied me with a complimentary 
copy of Mathematica 7 and 8 for the preparation of these materials. The opinions expressed 
herein are my own and cannot be blamed on anyone else. Brenton R Groves.
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Additional References
Wolfram Mathematica Tutorial Collection http://www.wolfram.com/learningcenter/
tutorialcollection/
Mathematics and Algorithms, 461 pages.
Visualization and Graphics, 190 pages.
Notebooks and Documents, 231 pages.
These tutorials can be downloaded in PDF format or purchased in hard copy for USD$20 each.

Mathematica Books 
http://www.wolfram.com/books/ 

Course catalog 
http://www.wolfram.com/training/courses/
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MATHEMATICS INVESTIGATIONS 
IN THE PRIMARY CLASSROOM

Phong Lee Koay, Lu Pien Cheng 

National Institute of Education, Singapore

Mathematical problem solving is at the centre of the framework 
of the mathematics curriculum in Singapore, and mathematical 
problems involve non-routine, open-ended and real-world 
problems. In Singapore, primary mathematics teachers tend to 
focus on the teaching of various problem-solving heuristics than 
to the more extended mathematical processes in investigations. In 
fact, many primary school mathematics teachers are unfamiliar 
with the investigative processes in mathematics, and have 
seldom attempted to integrate mathematics investigation into 
their teaching. This article shares some approaches in the use of 
mathematics investigations in a primary classroom.

Introduction 
Mathematical problem solving is at the centre of the framework for the mathematics 

curriculum in Singapore. The framework was constructed in 1990 and has not changed 
much over the years. Besides aiming to equip all primary school students with the 
mathematical concepts and skills, and develop positive attitudes towards mathematics, the 
syllabus also aims to help all students develop their process and metacognitive skills so 
that they can formulate and solve problems. (MOE, syllabus 2007). In fact, mathematical 
problem solving is the ultimate aim of mathematics education in Singapore. Unfortunately, 
in most primary mathematics classrooms in Singapore, mathematical problem solving 
has been limited to solving word problems and non-routine problems. The teaching of 
problem solving is basically the teaching of the problem solving heuristics and mathematics 
investigation is unheard of for many teachers. 
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In the previous syllabus document, a problem covers a wide range of situations from 
routine mathematical problems to problems in unfamiliar contexts and open-ended 
investigations that make use of the relevant mathematics and thinking processes (MOE, 
2001, p.10). Since then, the term ‘open-ended problem’ has displaced ‘open-ended 
investigations’ in the 2007 syllabus documents. In Singapore, most teachers consider 
an open-ended problem as a process problem with a unique goal that can be reached by 
application of some problem solving heuristics. Consequently, teaching of problem solving 
in primary schools involves the teaching of problem solving heuristics listed in the syllabus. 
The heuristics include using a representation (e.g., drawing a diagram, systematic listing), 
making a guess, walking through the process (e.g., act it out, work backwards) and changing 
the problem (e.g., consider a simpler case). 

Problem Versus Investigation
How is a problem different from an investigation? In an open-ended problem, students 

have limited freedom to decide the goals they want to achieve. For example, the following 
task has a unique goal (Figure 1). Pupils need to use heuristics (systematic listing) to reach 
the goal.
How many squares can you find in the following figure?

Figure 1. How many squares problem.

This is an example of a process problem commonly given to the students. To challenge 
the more able students, teachers may pose extensions to the problem by asking ‘What if we 
have the chess board instead of the given 5 units by 5 units square grid?’ ‘What if a unit 
square is removed from each corner?’ or ‘What if the figure is made of triangles instead 
of squares?’ In each question, the goal is given. That is, finding the number of squares or 
triangles. Students may use different heuristics to solve the problem but all will arrive at the 
same correct answer. Compare to the following task.
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Figure 2. Investigation squares on the chessboard.

This is an investigation (Figure 2). There is no specific and recognizable goal in the task 
statement. It is up to the students to explore and determine the goals for themselves. Some 
students may want to examine the squares formed, or squares formed on the chessboard 
without the two white squares at the corners. Others may want to explore how the black 
squares are enclosed by rectangles on the chessboard. For example, as shown in Figure 3, 
eight black squares can be enclosed by an 8 by 2, 5 by 3 rectangles or a 4 by 4 square.

 Figure 3. Examples of rectangles.

In USA, the term ‘open problem’ is often used to describe such task that has no 
specified goal in the problem statement. It is up to the students who respond to the 
investigation to decide and formulate a goal. Hence an open problem is an investigation. 
It is the specification of the goal that distinguishes between an investigation and an open-
ended problem as pointed out by Orton and Frobisher (2004). In this article, we view an 
investigation as an open problem and report the performance of some ‘returning’ primary 
school teachers in a mathematics investigation. ‘Returning’ primary school teachers are 
teaching-diploma holders who take a break from teaching and return to the National 
Institute of Education, Singapore, to pursue a degree.
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Teachers’ Views of Mathematics Investigations in Singapore 
Primary Schools

The responses found in the portfolios of these teachers submitted at the end of the 
course seem to indicate that teachers in Singapore seldom implement mathematics 
investigations in their school mathematics curriculum. Investigation is often ignored or 
relegated to the category of ‘if-have-time activities’. One of the reasons given is the lack of 
curriculum time for such activity.

As the idea of investigation task is crucial to both the study of mathematics 
and the extension of knowledge in various fields, students in primary schools 
are not exposed to these as teachers in school are hard-pressed for time to 
complete the syllabus. (Teacher G)

There are also teachers who had not done any mathematics investigations in their 
school days and had the preconceived idea that investigation is meant for science and not 
mathematics.

I have to say that this is one of the most foreign components in this module. 
I have dealt with plenty of scientific investigations, but have little contact 
with mathematical investigation. (Teacher J)

I have always thought investigation can be done on Science topics and it is 
not feasible to get pupils to do on math topics but this lesson has proved me 
wrong. (Teacher N)

Some teachers also find investigations tedious as they have to explore various cases in 
order to make conjecture and ‘proof ’ the conjecture. Very often, they are not confident 
whether the path adopted and the generalization deduced was valid or not. They find 
the investigation process tedious and time-consuming. The uncertainty and lack of quick 
solution can lead to frustration and loss of interest.

The session on mathematical investigations was the most challenging for me 
since it is an open-ended process that might be tedious at times. Furthermore, 
I don’t recall myself doing such investigative tasks during my school days 
when I learnt mathematics so it is something rather novel to me. (Teacher E)

Despite the difficulties faced in carrying out the investigation, the teachers do consider 
mathematics investigation as important and a means to teaching the process skills. They 
are aware that mathematics investigations, like problem solving, are mathematical activities 
that exemplify a teaching approach that promotes mathematical thinking, reasoning and 
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communication, and process skills delineated in the curriculum framework. Mathematics 
investigations are relatively more challenging than problem solving, and often involve 
different strands of mathematics, and may vary both in style and context. For example, 
investigation of the symmetry of polygons links geometry to whole numbers. Some 
investigations may relate to applications in everyday life situations while others may not. 
Some can be presented to the students as an open problem to be solved, while others can be 
posed as a question to be answered or an issue to be explored.

Processes in Investigations 
The process of problem solving involves Polya’s four steps: Understanding, Plan, 

Do and Check. It involves the application of problem solving heuristics to solve a given 
problem. Polya’s steps to problem solving are repeatedly illustrated in the textbooks while 
the investigative processes are not found anywhere in the textbook series. Neither is the 
investigative process stated explicitly in the Singapore mathematics framework. Orton and 
Frobisher (2004) identify four general processes in mathematics investigations (operational 
processes, recording processes, reasoning processes and communication processes) that 
contribute to the mathematical processes involved in the development of new ideas and 
the exploration of relationships. These mathematics processes are unique to mathematics 
and include the processes of guessing, pattern searching, making prediction and conjecture, 
testing conjecture and hypothesizing, testing hypotheses and ending with generalizing and 
proving (Orton & Frobisher, 2004). Often the processes of making and testing conjecture 
need to be carried out repeatedly before generalization can be made. Unfortunately, many 
teachers themselves find these processes tedious, reflecting their beliefs about the nature of 
mathematics and the teaching and learning of mathematics.

The process of investigation begins with coming to grips with the task and exploring the 
different problems or aspects inherent to the task so that one or more courses of approach 
may emerge. Guessing is the result of this exploration. One then investigates systematically 
by collecting relevant data, tabulate the data so that one can search for pattern(s) among 
data, predict and make conjecture base on the pattern(s) detected. Before one can make 
generalization base on the data, the conjecture has to be tested, modified and tested again. 
Primary school students are not expected to provide a formal proof for their generalization 
but they should be encouraged to provide some form of justification, for example, testing 
their generalization by drawing.
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Teaching Mathematics Investigations
If the teachers themselves are not aware of the processes in mathematics investigations 

and have not carried out any mathematics investigations before, then getting them to 
incorporate investigations in their mathematics curriculum would be a great leap for 
them. They would be reluctant to take the leap. One way to remedy this is to remodel the 
mathematics education courses for the pre-service teachers to involve investigations, and 
the other way is to provide both moral and material support for those practicing teachers 
who are keen to take the first step.

At the initial stage, students would not like to carry out investigations as they have 
been conditioned to identify the ‘given’ and the ‘to find’ in a task and then following 
certain procedure to the answer which is to be found at the back of their textbooks. They 
are often frustrated because they do not know where to start and the solution cannot be 
found in a short time. For these students, teachers may want to start with a structured 
activity sheet to familiarize students with the investigation processes. For example, instead 
of giving the investigation in Figure 4, Grade 4 students may be guided to investigate the 
lines of symmetry for quadrilaterals, pentagons and hexagons where each investigation 
process is highlighted.

Figure 4. Polygon symmetry (adapted from Sharp & Wilson, 1987).

In the structured activity sheet, prompts are provided to guide students to:
•	 investigate systematically, starting with triangles and quadrilaterals
•	 collect more data by considering other polygons such as pentagons, hexagons  

and heptagons
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•	 tabulate the data collected, look for pattern(s) and make hypotheses
•	 test their hypotheses on other polygons such as nonagons
•	 provide summary of their investigation
Once the students are familiar with the investigation processes, short investigations 

such as Table Seating (Figure 5) can be assigned. 

Figure 5. Table seating – An investigation.

The task above was assigned to the returning teachers who were not well versed in 
investigations. The suggested questions caused those who were not risk takers to follow the 
directions closely and to end their investigation once they had answered the questions. Figure 
6 shows sample of such responses given by these teachers. For these teachers, the objective 
of the investigation was to get a ‘neat’ solution. They did not consider the practicality of 
having just a long row of table in a restaurant and they did not explore further. Further 
exploration would involve more data to be collected and analysed which may not lead to a 
satisfactory conclusion. They were satisfied once they could derive a generalization for any 
given number of tables. These responses show lack of critical thinking. The mathematical 
solution, albeit correct, is not interpreted in the context of the real-world situation, it 
cannot not be applied to the real-world situations. 
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Figure 6. Table seating – Sample of response I.

However, the lack of specifics in the task did allow some teachers to consider other 
possibilities leading to more than one conclusion. Some of them explored different 
arrangements of the tables, while others considered different combinations as illustrated 
in Figure 7.  

Figure 7. Table seating – Sample of response II.

Often these teachers were not able to test their predictions and make generalization 
in some cases. Their reports reveal their relatively better organization and communication 
skills, ability to pose problems and their willingness to take risk. Over the time, after 
experiencing some success in short investigations, students like these teachers, will be more 
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willing to tackle longer investigations. When given tasks like investigating the figurate 
numbers or pentominoes (Figure 7), they would not be asking their teachers, “What am I 
supposed to do?” “What is the question?” “How do we start?” They will not be looking for 
short-term rewards and are willing to face impasses.

Figure 8. Mathematics Investigation Task

Using Mathematics Investigations in the Classroom
There are many books available where teachers can find examples of mathematics 

investigations (e.g. Kirkby, 1987; Bastow, Hughes, Kissane, & Mortlock, 1984). Teachers 
can also design investigation tasks from other subject areas including arts and crafts. For 
example, origami is good for investigation in geometry and measurement. Many factors 
have to be taken into consideration when selecting an investigation suitable for students. 
They include the objective of giving the investigation, the experience, mathematical 
knowledge and attitudes of the students, and the time constraints. Moreover the format 
of the investigation must be interesting and relevant resources materials must be made 
accessible to students.  For example, in the investigation on Polygon Symmetry, template 
of various polygons would help students’ exploration while in the investigation on Table 
Seating, square tiles, cm-cubes and dot grid paper would be useful to students in their 
exploration.

In the classroom, students can take unpredictable approach in an investigation task. 
Hence, a teacher must be prepared by having a good understanding of the investigation 
and its possible solutions. For students who are familiar with the investigative processes, 
focus questions which could limit the thought processes of the students should be avoided. 
To emphasize variety and creativity and to promote critical thinking, directions should be 
kept general to provide students opportunity to make choices and explore. However, such 
general directions may not be popular with students who are result-orientated and do not 



Phong Lee Koay, Lu Pien Cheng

85

tolerate the ambiguity in the task. They are frustrated with the unspecified goal. They do 
not like making choices as it is difficult for them to decide what they are supposed to do. It 
would take some time to change their attitudes. Parents too may not accept mathematics 
investigation as a form of learning. If it forms part of assessment, they question both the 
validity and objectivity of such assessment tasks, and if it is not part of the assessment, 
they consider it as a waste of both the curriculum time and their child’s effort since the 
mathematical content of investigation are often not clear to them.  The Ministry of 
Education and the school have to work collaboratively to ‘educate’ these parents, help them 
to understand the purpose of investigations.

Conclusions
For a start, mathematics investigations can be part of learning. They do not have to 

be long. In the primary mathematics classrooms, short investigations could be suitable 
alternatives to homework worksheets. They are not mundane drill and practice exercises 
and give students freedom to choose their path of investigation and provide opportunity 
for them to show what they can do, practice a range of process skills and learn to work 
effectively with others. Investigation skills do not develop overnight. Teachers need to 
explicitly teach the skills to the students and help them refine the skills. Early in their 
experience with investigations, students may need help to identify some problems for them 
to consider. Such scaffolding can then gradually be removed. 

Investigations should not be fillers or activities for only the high achievers. All 
students irrespective of their mathematical ability should have opportunity to carry out 
investigations. Investigations can be a means for the students to develop 21st century skills 
(Ministry of Education, 2010). They enable students to think independently and critically, 
take calculated risks, persevere, and strive for excellence. Teachers are strongly encouraged 
to carefully plan and integrate investigations into their school mathematics curriculum, to 
develop process skills and promote greater diversity and creativity in learning.
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MATHEMATICS COMPETITION 
QUESTIONS AND PROBLEM 
SOLVING ExPERIENCE

TOH Tin Lam

National Institute of Education, Nanyang Technological  
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Educators generally associate mathematics competition with 
nurturing the mathematically gifted.  This chapter demonstrates 
that mathematics competition questions can provide students with 
rich learning experience associated with mathematical problem 
solving, which is the heart of the mathematics curriculum in 
many countries. The examples used for illustration in this chapter 
are taken from the Singapore Mathematical Olympiad and the 
Australian Mathematics Competition.

Introduction
The key role of mathematics competitions in developing the mathematically gifted 

and the high ability students has been identified by many mathematics educators and 
mathematicians (for examples, Bicknell, 2008; Campbell & Walberg, 2010; Kalman, 
2002). xu (2010) describes that mathematics competition can be used to “improve the 
mathematical thinking and technical ability in solving mathematical problems” (p. v) for 
the higher ability students. Many mathematicians share the same opinion as xu (2010).

Since the start of the International Mathematical Olympiad held in 1959, mathematics 
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competitions at the national levels have been used in identifying and supporting 
mathematical talents for a country, building the national pool of mathematically gifted 
students and preparing the best among them for the International Mathematical Olympiad, 
the most prestigious mathematics competition internationally.

Recently, some mathematics educators are beginning to recognize the usefulness of 
mathematics competition questions for developing students’ (not necessarily restricted to 
the mathematically talented students) learning of mathematics (for example, Toh, 2012; 
Vistro-Yu, 2008). Toh (2012) has identified mathematics competition questions potentially 
could be used to arouse students’ interest in mathematics and to engage them in developing 
mathematical reasoning and higher order thinking skills. Vistro-Yu (2010) has advocated 
the generating of “new” mathematics problems by innovating on existing mathematical 
problems in her teacher professional development workshops. She tapped on the rich 
resource of mathematics competition questions from the past years in her discussion.

In this paper, it will be shown how mathematics competition questions can be used 
to enrich students’ learning of mathematics through equipping them with the learning 
experience associated with mathematical problem solving.

Mathematics Competition and Problem Solving 
The author’s personal association with mathematically talented secondary school 

students and trainers of mathematics competitions shows that the vast collection of the past 
year mathematics competition questions are used solely in preparing the mathematically 
talented students for mathematics competitions by equipping them with additional content 
knowledge or “resources” (Schoenfeld, 1985) not usually covered in the mainstream school 
mathematics curriculum. In other words, these competition questions serve as a guide for 
the potential contestants and trainers on the additional content knowledge that students 
participating in the mathematics competition must be equipped (as there is no official 
“syllabus” for the competitions). 

Teachers generally do not tap into the mathematics competition questions for their 
teaching. It is believed that the vast collection of mathematics competition questions can 
benefit only the mathematically talented but not the general student population, hence 
mathematics competitions have very weak link with the mainstream school curriculum. 
With this belief, the pedagogical value of the mathematics competition for the general 
student population is neglected.
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In this paper, the author provides an alternative way of looking at this rich resource of 
competition questions: most of the questions, when used appropriately, have very strong 
link with the usual mathematics curriculum through mathematical problem solving, which 
is undeniably the heart of the mathematics curriculum in very countries in the world. For 
example, in the United Kingdom, the Cockcroft Report (1982) stated that “mathematics 
teaching at all levels should include opportunities for problem solving”. In the United 
States, the National Council of Teachers of Mathematics (NCTM) in their document 
stating the principles and standards for school mathematics stated that: “[p]roblem solving 
should be the central focus of the mathematics curriculum” (NCTM, 1989). In Australia, 
the 1990 “National Statement on Mathematics for Australian Schools” stated that students 
should develop their capacity to use mathematics in solving problems individually and 
collaboratively (Australian Education Council, 1990). Mathematical problem solving is 
at the heart of the Singapore primary and secondary mathematics curriculum (Singapore 
Ministry of Education, 2006).

From a review of the past year mathematics competition questions from Singapore 
and Australia, it is apparent that many competition questions provide a good avenue for 
equipping students with the processes of problem solving, and helping them to acquire a 
problem solving model. 

Any student attempting mathematical problem solving requires a model to which 
he or she can refer, especially when progress is not satisfactory (Toh, Quek & Tay, 2008). 
Even a good problem solver may find the structured approach of a model useful, as Alan 
Schoenfeld (1985) recounted in the preface to his book Mathematical Problem Solving 
about Polya’s book How to Solve It:

In the fall of 1974 I ran across George Polya’s little volume, How to Solve It. I was 
a practising mathematician … My first reaction to the book was sheer pleasure. If, after 
all, I had discovered for myself the problem-solving strategies described by an eminent 
mathematician, then I must be an honest-to-goodness mathematician myself ! After a 
while, however, the pleasure gave way to annoyance. These kinds of strategies had not been 
mentioned at any time during my academic career. Why wasn’t I given the book when I was 
a freshman, to save me the trouble of discovering the strategies on my own?

In this paper, Polya’s problem solving model will be used as the base of discussion for 
several reasons: Polya’s model is well-known and it is the model described in the syllabus 
document of the Singapore Ministry of Education (which the author is most familiar) 
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and many other countries. Further, the model is relatively easy for students to ‘carry about’ 
in their heads. Of course, any other sound problem solving model is equally viable for 
discussion. 

Polya’s model could best be depicted as a flowchart with four components, Understand 
the Problem, Devise a Plan, Carry out the Plan, and Check and Extend (the original words 
used by Polya are Looking Backward). To reflect the dynamic nature of mathematical 
problem solving, the four stages of the model should not be seen as a linear sequential one; 
back-flow between any two of the four stages should be allowed.

Acquiring Problem Solving Via Competition  
Questions: Two Examples

We present two questions from the past years’ mathematics competitions: one from the 
Australian Mathematics Competition (AMC) and one from the Singapore Mathematical 
Olympiad (SMO), and demonstrate how engaging students to solve these questions could 
provide students with rich learning experience of the mathematical problem solving process.

Question 1. While attempting to solve a quadratic equation, Christobel inadvertently 
interchanged the coefficient of   with the constant term, causing the equation to change. She solved 
this different equation accurately. One of the roots she got was 2 and the other was a root of the 
original equation. Find the sum of the squares of the two roots of the original equation. (AMC)

Stage 1: Understand the Problem
This is a “non-routine” problem; secondary school students have probably not 

encountered this genre of questions in the mainstream school mathematics. Problem 
solving necessarily begins with one trying to understand the problem (which is the first 
stage of Polya’s model). In the context of this question, what is meant by “interchang[ing] 
the coefficient of  with the constant term”? One crucial strategies in trying to understand 
a problem is to consider specific numerical examples: 

By considering specific examples as illustrated above, one is likely to have a better 
understanding of the procedure described in the problem and proceed to the next stage of 
Polya (of devising a plan).
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Stage 2: Devise a Plan
To solve this problem, the following strategies are required:

•	 Setting a sub-goal: It is easily observed that the key to unlock this problem would 
be to study the effect on the solution of a quadratic equation when the coefficient 
of  and the constant term are interchanged

•	 Consider specific numerical examples: One might consider specific quadratic 
equations whose roots are easy to determine to examine the effect of interchanging 
the two coefficients.

The above “strategies” are what we call heuristics in the language of problem solving. The 
use of heuristics comes in handy at this stage of devising a plan. According to Schoenfeld 
(1985), a heuristic is a ‘rule of thumb’ for making progress in difficult situations when one 
solves a mathematical problem. The teaching of heuristics is an important (but not the sole) 
aspect of mathematical problem solving. The right choice of heuristics is a necessary facet 
of successful problem solving. Not only must one be acquainted with a problem solving 
model and a list of heuristics, a good problem solver must be able to manage resources at his 
or her disposal, choose promising heuristics to try, control the problem solving process and 
progress, and examine his or her beliefs about mathematics that hinder or facilitate problem 
solving (Schoenfeld, 1985).

Stage 3: Carry out the Plan
For this question, it is a natural progression to proceed to Stage 3 by considering specific 
quadratic equations whose roots are easy to find. Since we want to examine the effect of 
switching the coefficient of  and the constant term, one’s choice of the quadratic equation 
should have these two terms to be distinct. Consider the following examples:

From the above examples one would conjecture that the roots of the new equation obtained 
by switching the coefficients of  and the constant term are the reciprocals of the original 
equation. To further convince oneself, one could consider several other numerical examples 
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of quadratic equations to verify this observation. Making conjectures and verifying conjectures 
are important heuristics of problem solving.
Since “[o]ne of the roots she got was 2”, if our conjecture was correct, the corresponding root 
of the original equation was 

 
and that since “the other was a root of the original equation”, 

this original root must be invariant under reciprocal. Thus, the choice of this original root 
must be 1 or –1. There is insufficient information in the question to determine which must 
be the original root of the equation.

“Find the sum of the squares of the two roots of the original equation.” The possible 
original roots of the equation are either 1 and 

 
; or –1 and 

 
In either of the two cases, the 

sum of squares of the roots is .

Stage 4: Check and Expand
After obtaining the answer to the original problem, student should be encouraged to 

reflect on their method and the answer to the problem (this reflection part is usually absent 
in competition training for students). For instance, the heuristic of considering specific 
quadratic equations and then recognising the pattern to obtain the answer to the given 
problem (as shown in Stage 3 above) is not rigorous, as pattern recognition may fail (see, 
for example, Toh, Quek, Leong, Dindyal & Tay, 2011, pp. 125, which is a classic example). 
Teachers could challenge their students to appreciate the fallibility of pure pattern 
recognition and consider alternative solution for this question.

Alternative method: It is crucial that in algebraic reasoning, students must be able to 
move beyond considering specific numerical examples to a general abstract case (Lee, 2006). 
Compare the general quadratic equations  and , 
where the constant term and the coefficient of  are interchanged. Since the second quadratic 
equation can also be expressed as 

the roots of the first equation is the reciprocal of the second. The advantage of using this 
rigorous approach is that the earlier approach of considering specific numerical examples 
can be dispensed with. 

Expansion of the problem: Students can be challenged to move on to expand on the 
given problem; a natural progression for students could be to explore whether such an 
interchange of the coefficient of the x3 term and the constant term in a cubic polynomial 
equation would necessarily result in the roots of the new equation being the reciprocal of 
the first one. 
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Consider a specific cubic equation, for example, , whose roots 
are -2, -2, -2. By interchanging the coefficient of x3 and the constant term of the original 
equation, we obtain

whose roots are not the reciprocal of the roots of the original equation.  
However, if in addition the coefficients of x2 and x are interchanged, the new  

equation obtained

has roots , which are the reciprocals of the roots of the original equation.  It 
is a good exercise to challenge the students to offer a rigorous solution for this new problem 
as in the original question.

Students could further be challenged to explore how the coefficients of a higher degree 
polynomial equation be interchanged in order that the roots of the new equation are the 
reciprocal of the original one.

Note that since the main business of mathematics competition is for students to obtain 
the correct answer in the shortest possible time, such checking and expanding to enhance 
students’ learning or deepen their understanding and appreciation of mathematics could 
be ignored. Further, strategies to obtain the correct answer might lead students to be 
contented with partial reasoning.

 
Question 2.  Let x be a real number and let 

 
If A is an integer, find the unit digit of A2003.  (SMO 2003)

Stage 1: Understand the Problem
This is likely to be another “non-routine” problem for a secondary school student.  

Students need to grapple with the two facts: (1) the given A appears to be a function on 
the real numbers instead of a whole number; (2) for the question to be valid (finding the 
unit digit), the expression A must be a whole number! In order to understand the problem, 
a natural heuristic to use is to substitute some numbers for the values of x. It would appear 
that the function A is not defined for most values of x that one might substitute – this is the 
“catch” of the problem.

Stage 2: Devise a Plan
The first heuristic needed to solve this question is to set a subgoal – to determine all 

the possible values represented by the expression A by substituting all possible values of x 
for which the expression A is defined. Once the value(s) of A is (are) determined, pattern 
recognition could be used to find the unit digit of A2003.  
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Stage 3: Carry Out the Plan
By substituting different possible values of x for which A is defined, one would be 

quick to realize that the function A is not defined for most values of x. The next step is to 
identify the attribute of the function (it is known that square root of a negative number is 
not defined). Following this, one would observe that the only choice of x = -2.  With this, A 
= 7. Thus, finding the unit digit of A2003 through pattern recognition follows easily.

Stage 4: Check and Expand
This problem involves two parts: (1) conceptual understanding of radical functions and 

(2) finding the unit digit of large powers of a whole number. It provides a good opportunity 
for students to dissect this problem into two parts for discussion:

Radical function: The domain of square root function consists of non-negative real 
numbers only. This could lead students to explore a large category of problems:

E.g 1. Find the sum of all the values of real x for which the function  is real.

E.g. 2.  Find the set of values of x for which the function 

This category of problems deepens students’ understanding of the domain of a 
function, in addition to engaging them in the problem solving processes.

Finding unit digit of large powers of whole numbers: It is not difficult to generate items getting 
the solvers to find the unit digit (or even the last two digits) of the powers of large numbers.

E.g. 1. Find the unit digit of the number 74009;  174009;  19794009.

E.g. 2. Find the last two digits of the number 72012;  5203954.

E.g. 3. Find the unit digit of the number 7 7 7

Although the level of difficulty varies across the three examples above, the standard 
heuristic is to solve these problems by pattern recognition.

Use of Competition Questions in Classroom
Many mathematics competition questions, as illustrated by the two questions from 

the Singapore Mathematical Olympiad and the Australian Mathematics Competition 
above, provide good resources that teachers could use in the usual mathematics classroom 
to engage students in mathematical problem solving. Teachers could use this opportunity 
to equip their students with a problem solving model. As a start to conducting problem 
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solving lessons using mathematics competition questions, it would be useful if (1) students 
are first familiarized with the language of problem solving that can be used throughout the 
mathematics classes, and (2) teachers could model the problem solving processes (thereby 
demonstrating Polya’s four stages) when they encounter an unseen problem, thereby 
highlighting the stages involved in handling non-routine problems.

In the usual mathematics classroom, teachers might consider providing scaffolding 
for their students in handling the problems once they are familiar with the language of 
problem solving and a model of problem solving (e.g. Polya’s model). As an illustration, 
Toh et al (2011) has provided a generic form of scaffolding in the form of a “mathematics 
practical worksheet” for problem solving lessons.

Conclusion
This paper provides readers with examples how mathematics competition questions 

could provide students with rich learning experience in mathematics in mathematical 
problem solving. It should be noted that

1. Not all competition questions are good for teaching problem solving.  There are 
usually some questions which are technically involved and need “special” techniques.

2. Students must have sufficient “cognitive resources” related to the questions  
for discussion.

It is crucial for teachers to identify the questions with sound pedagogical principle and 
use appropriate scaffoldings to optimize the benefit for their students.
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LOGIC AND MATHEMATICS
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Developing logical thinking in students; why should we and  
how can we?
This paper discusses the notion that the teaching or fostering of 
logical thought is an important prerequisite of successful learning 
in mathematics. An ability to be more logical in thinking 
appears to be an indicator as to how successful a student will 
be in mathematical achievement (Nunes et al., 2007). Nunes 
et al. (2007) claim that there is a place for specifically teaching 
logical thinking, which will then lead to improved mathematical 
understandings in all areas of mathematics. Attribute blocks 
(or logic blocks, as they are often referred to) can be a very 
useful tool to facilitate the development of logical thought. Some 
practical activities for the classroom, that utilise attribute blocks,  
are also shared.

Background
Piaget is the educational theorist that most of us remember from our educational 

psychology studies (Krause, Bochner, Duchesne & McMaugh, 2010). Piaget’s work has 
had a significant influence on mathematics education, with the contention that through 
accommodation and assimilation, children construct schema ( Jorgensen & Dole, 2011). 
Schema theory explores the way in which children make connections between situations, 
allowing them to transfer understandings developed in one context to another. Piaget’s 
stage theory of cognitive development strongly influenced early childhood and primary 
education in the 1960’s and 1970’s. In Piaget’s schema, Stage 4, the formal operations 
period (which occurs between the ages of 11 or 12 to adulthood) is the one in which 
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adolescents fully develop reasoning that is “logical, abstract and systematic” (Wadsworth, 
2004, p.120). However, prior to Stage 4, there are clearly many elements of logical thought 
being developed, such as in classification tasks; even very young children show some 
logical thought processes. In more recent years, there has been some criticism of Piaget’s 
stage view, with its assertion that progression through these stages cannot be accelerated 
in any way (Bobis, Mulligan & Lowrie, 2009). Another concern has been that this stage 
view highlights what students cannot do, rather than what they can do ( Jorgensen &  
Dole, 2011).

Despite these issues, Piaget has most definitely made a vital contribution to the 
understanding of how number concepts and logic are developed in young children. 
Piaget’s work has had a strong influence on constructivist thinking, which recognises that 
mathematics must make sense to students if they are to retain and learn mathematical 
concepts. The role of dialogue and argumentation are also considered crucial in the 
constructivist paradigm (Bobis, Mulligan & Lowrie, 2009). Further to Piaget’s work on 
constructivism, we have the influence of Vygotsky, who saw the role of the expert teacher 
as being vital ( Jorgensen & Dole, 2011). An expert teacher is one who is able to identify 
where a student is currently at in their understandings, and then, by providing rich discourse, 
questioning or appropriate learning situations, encourages students to move on from their 
current course of thought as well as the development of “logico-mathematical knowledge” 
( Jorgensen & Dole, 2011, p.25). As stated by Van de Walle & Lovin (2006), “Conceptual 
knowledge of mathematics consists of logical relationships constructed internally and 
existing in the mind as a part of a network of ideas” (p.6).

Connection between Logical Thinking and Mathematics 
Ability

Clements and Sarama (2006) discussed the fact that all thinking involves mathematics 
and asserted that this all comes down to logic. Although logic may seem like a very abstract 
thought process, researchers see an implicit use of logic in children at a very young age. 
Nunes et al. (2007) investigated whether children’s mathematical understandings are 
actually based on their ability to reason logically. In the results of a longitudinal study, 
they asserted that evidence demonstrates that logical abilities are a powerful predictor 
of mathematical achievement later in the child’s schooling. In addition, Nunes and his 
colleagues trained a group of students in logical reasoning and found that this group made 
greater progress in mathematics, than a control group that did not receive any training 
(Nunes et al., 2007). This study specifically sought to establish a causal link between logical 



Rose Golds

99

reasoning and mathematical learning with the logic training having a pure focus on logical 
relations rather than on calculation. Nunes et al. (2007) found that the teaching of logical 
competence was extremely successful and had a “strong and beneficial effect … even after 
an interval of 13 months” (p.162). These findings were based on standardised achievement 
tests used in British schools with seven year olds.

The next two sections will explore how attribute blocks have been used previously 
in schools and early childhood centres to assist with the development of logical thinking 
and look at the connection with set theory. There will be a focus on the importance of 
developing an understanding of set theory when looking at problem-solving, particularly 
in mathematics.

Use of Attribute Blocks in the Past
Attribute blocks (Invicta, 1980) can be seen as one tool which can be utilised to develop 

logical thinking. In the 1980’s and 1990’s, attribute blocks were seen as a very useful piece 
of equipment which was readily available in most early childhood centres and primary 
schools (at least in the New Zealand setting). Booker, Bond, Sparrow and Swan (2010) 
discussed that fact that the need for materials is “fundamental in teaching mathematics” 
(p.15) in order to build conceptual understanding. The latter part of the twentieth century 
was an era when teachers often had few materials or hands-on resources to utilise with 
their children, to assist with the development of mathematical ideas. This was particularly 
challenging for teachers (and students) when endeavouring to foster complex, conceptual 
understandings. The lack of available equipment was quite surprising, considering that 
constructive thought and Piaget’s ideas were widely acknowledged and incorporated into 
teacher training programs. The reality was that in many classrooms, traditional methods 
still abounded, based on rote learning; ‘programs’ of learning were frequently textbook 
driven. As a primary school teacher in the 1980’s and 1990’s, it was a relief to have some 
concrete materials to use! Furthermore, attribute blocks were extremely useful as a practical 
way of developing understandings of sets and how set theory could be used to develop a 
means of understanding logical connections.

Set Theory
“Sorting according to given criteria is one of the most fundamental processes in 

mathematics” (Haylock, 2010, p.341). Sorting provides us with the basis of working 
with and flexibly understanding and interpreting data; it also provides an underlying 
understanding of what counting is all about. Venn diagrams were developed by John Venn 
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(1834-1923), as a useful aid in representing logical relationships between various sets. The 
languages of sets (such as universal, intersection and complement) (Haylock, 2010) are all 
clearly portrayed through Figure 1.

•	  ‘Intersection’ is the area where two or more sets overlap e.g. the part where the 
‘Red’ and ‘Large’ sets overlap, contains Red, Large objects.

•	  ‘Universal’ refers to the entire set.
•	  ‘Complement’ refers to the empty set i.e. one without any objects in it.

 Figure 1. Sorting attribute blocks (Darker shapes represent red).

Another diagrammatic form, which can be used to assist with understanding the 
relationships between sets, is the Carroll diagram, which was created by Lewis Carroll 
(1832- 98). Carroll is more widely known as the author of the Alice books but was also a 
mathematician who took a great interest in the development of logical thought (Haylock, 
2010). Carroll devised a diagram which is an example of a two-way reference chart, which 
allows for sorting of data in response to two variables (see Figure 2).
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Figure 2. A Carroll diagram with attribute blocks.

Venn and Carroll diagrams can both be used very successfully with attribute blocks; 
they are a tool which can encourage students to use these diagrams to assist their logical 
thought processes. Once these ideas have been grasped with attribute blocks, these 
strategies can be easily utilised in other situations that demand logical problem-solving as 
students have now been provided with some sort of framework to utilise. Problem-solving 
is increasingly seen as a vital area to focus on in our teaching, as mathematics has moved 
from consisting of ‘a page of sums’ to drawing on students’ understandings, and then 
moving on to more abstract processes. This requires a much greater connection between 
literacy and mathematics which can be a major stumbling block for some students. This 
current understanding of what mathematics is all about has a strong focus on solving 
problems and thinking. I have included in the next section a number of activities that can 
be used with attribute blocks that will foster logical thinking; they can also provide a range 
of frameworks for applying this thinking in more general problem-solving situations.

Attribute Block Activities
Listed below are some of the attribute block activities that can be used readily with 

children to encourage logical thinking.
1.  Grouping in sets by attribute- e.g. set can be described as ‘Triangle and Thin’ or 

‘Red and Thin’. Can question further e.g. “How many are there in the set that 
contains Yellow and Thick and Small elements?”
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2.  Create a pattern, then remove some blocks; other students can work individually 
or co-operatively to find the missing blocks (great for group-work).

3.  Complete a pattern using Thin/Thick elements and/or Large/Small etc.
4.  One attribute difference game - continue a ‘chain’ showing one difference between 

each block.

Extension: Continue a chain showing two differences between each 
block or three or four difference.

Extension: Continue a chain alternating from one to two differences.

5.  Two dimensional domino game (see Figure 3).

 Figure 3. A one and two difference game.

6.  Disjoint sets- using grouping circles or sheet divided in two parts. Put all blocks of 
one element in each set e.g. all red. Describe and/or say how many blocks in the 
set.

7.  Union of two or three sets- Using intersecting sets(see Figure 1).
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8.  Gate Games (see Figure 4).

A gate keeper is chosen by the teacher or children. ‘Tickets’ are used 
throughout the games, these are the attribute blocks.

Children choose a ‘ticket’. When 
someone approaches the gate they 
must show their ‘ticket’ to the gate-
keeper who will let through only those 

‘tickets’ which meet the element he has 
chosen. Anybody who can correctly 
identify what is being collected will 
take the place of the gate-keeper.

The teacher/children pick two gate-
keepers for this game. The children 
choose a ‘ticket’. All ‘tickets’ which 
meet the first element (e.g. square) 
chosen by the gate-keeper at Gate 1, 
will proceed to Gate 2. The second 
gate-keeper will have chosen a different 
element (e.g. large). All ‘tickets’ which 
meet the second element proceed. 
The first two people to proceed and 
identify the ‘set’ will become the new 
gate-keepers.

For this variation, the children can 
take their ‘ticket’ to either Gate 1 or 
Gate 2. For example the element of 
Circle can get past the Gate 1 child 
and the element of Thick can get past 
the Gate 2 child.

Figure 4. Gate games using attribute blocks.
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9.  Using logic arrows - place blocks on chart with arrows indicating the change to 
make e.g. 2 differences or 3 differences (see Figure 5). 

Figure 5. Logic arrows with attribute blocks.

10.  Track ways (see Figure 6).

 Figure 6. Track ways.
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These examples are just a sample of the various activities that can be undertaken with 
attribute blocks but provide an excellent starting point in developing logical thinking in 
children. All of these tasks can be attempted individually or in co-operative groups, which 
would have the additional advantage of fostering “higher academic achievement … positive 
attitudes … acceptance and understanding of individual differences” (Bobis, Mulligan & 
Lowrie, 2009, p.317). After establishing the language of logic and exploring these activities 
with attribute blocks, it would be extremely beneficial to then use the strategies acquired 
with other problem solving or logic tasks, further developing links with literacy. These 
strategies can all support young learners “to develop the ability to think creatively, critically, 
strategically, and logically” (New Zealand curriculum, 2007, p.26).
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The Singapore mathematics curriculum recognizes the importance 
of engaging students in solving real-world mathematics problems. 
With the current revision of the school mathematics curriculum, 
solving real-world problems in the form of mathematical modeling 
is an essential part of teaching that would be incorporated in the 
new Singapore school textbooks which will appear in 2013. This 
paper demonstrates with one example how a real world context 
in a textbook can be developed into a modeling task, identifies 
the knowledge required of students in solving the task, and 
how teachers can guide their students through the processes of 
scaffolding.

Introduction
Mathematics teachers have the common experience that their students want to know 

the relevance of classroom mathematics to their lives. Engaging students in solving real-
world mathematics problems can thus help to give students the meaning to the mathematical 
content knowledge that they learn (Williams, 2007). It is thus not surprising that there is 
a call among the mathematics education community throughout the world to introduce 
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mathematical tasks that are related to ‘real life’ and the ‘real world’.

The new Singapore Secondary School Mathematics curriculum emphasizes the 

application of mathematics to solve real-world problem. According to the Singapore 

Ministry of Education, students must be able to connect mathematics that they have learnt 

to the real world in order to enhance their understanding of key concepts and to develop 

mathematical competencies (Ministry of Education, 2006a; 2006b).

Real-world Mathematics Problems  
Since the early years, Singapore textbooks have been replete with problems on ‘real life 

application’, in addition to some context-free questions for student practice. Why then is 

there a need to highlight this aspect again in the recent curriculum review in 2007? 

A survey of the textbook problems on ‘real-life application’ of mathematics shows that 

most of these questions present the numerical values of the given data and the final numerical 

answers in a “very clean and tidy state” (Ang, 2009). It is very difficult to convince students 

that these are the real life application of mathematics. In addition, real life problems are 

usually open-ended, as in there may be more than one possible answer to the problem, 

which contrast the textbook application questions which usually have one final correct 

answer. Furthermore, in handling many real life problems, the solvers would need to state 

their assumptions or impose restrictions in order to arrive at a particular answer, while the 

assumptions in textbook questions have been made ready for the solver.

This leads to the new emphasis of ‘mathematical modeling’ in the Singapore 

Mathematics curriculum, which brings out that real life application should involve more 

than contextualizing a mathematical problem; it should take into consideration that real life 

tasks are usually without neat answers (and could likely be open-ended), and assumptions 

need to be made before a particular task can be solved. The answers may be dependent on 

the assumptions made in the particular context.

In the next section, we demonstrate how a typical textbook context (Figure 1) on the 

use of proper and improper fractions and mixed numbers which was introduced in a typical 

textbook could be modified into a modeling task. We shall also demonstrate the processes 

involved in solving the modeling task, and discuss the pedagogical considerations that 

teachers need to note.
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From Real World Context to Modeling Task: An Example

Figure 1. A context from a secondary school textbook (Toh, Lim, Chua & Heng, 2006) on 
fractions and whole numbers.

In the Singapore context, modelling is usually understood as the process of formulating 
and improving a mathematical model to represent and solve real-world problems. A ‘real-
world’ problem that uses the context of Figure 1 can be developed as follows: 

Modelling Task 

Beng Seng opens a bakery shop in Orchard Road. He has a secret recipe 
shown above for his famous chocolate cake. Advise him how much he 
should fix the selling price of a Beng Seng’s Delightful Choco Cake.

As in any real-world problem, there appear many missing conditions, unlike the 
standard textbook questions where all the information are given precisely. Through 
demonstrating the processes involved in handling the above task, the processes involved in 
the modeling processes will be presented. 

Step 1: Mathematisation 
The modelling task is about making profits in a business transaction and appropriately 

fixing the selling price of a cake based on a given recipe.  
In understanding profit and selling price (and cost price) of transaction mathematics, 

students will soon realize that the problem lies in the mathematical equation  
Profit = Selling Price – Cost Price.

To fix the selling price, students need to recognize that they are required to (i) work 
out the cost price (based on the given information about the recipe) and (ii) decide on the 
profit for each cake.
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Thus the first step of solving the above modelling task is to formulate the real-world 
problem into a mathematical one – mathematisation.

Step 2: Involving in Mathematical Computation
In working out the cost price, one needs to work out the cost of (i) cocoa powder; (ii) 

flour; (iii) butter; (iv) sugar and (v) eggs needed to bake one cake (Figure 1). In order to 
collect these data, students could be engaged to find out estimates of these prices from the 
grocery shops in their neighborhood or from the webpages. This process of data collection 
could turn out to be a meaningful activity for their subsequent learning of mathematics, as 
data collection and interpretation is a useful aspect of statistics education.

Alternatively, teachers could provide some form of scaffolding for students involving 
the cost of the ingredients of the cake (an example of a scaffold is shown in Figure 2) if they 
want to focus more on the calculation of the cost.

Ingredient Cost Compare
Required 
amount

Cost of 
ingredients

Cocoa powder 1 kg costs ___ 1 bag = 15 cups

Flour 1 kg costs ___ 1 bag = 15 cups

Butter 250g costs ___ 250g = 2 cups

Sugar 1 kg costs ___ 1 bag = 15 cups

12 eggs cost __

Figure 2. A sample of price list of the ingredients required for baking a cake.

Once the data is given, students would begin calculating the cost price of the cake.  
Here, students are expected to be able to perform mathematics computations involving 
fractions and proportion to obtain a plausible answer for the cost price.

Step 3: Looking Back
Students at this stage would need to advise Beng Seng on the profit he would want to 

set. The calculation of the selling price would then be obtained from adding the cost price 
to the profit. It would begin that the students would arbitrarily decide on the profit for the 
cake. Teachers could invite their students to review the answers they have obtained in the 
real world context.

For example, students could be engaged in reviewing the assumptions made:
•	 Is their selling price based on their presumed profit realistic? Would people want 

to patronize Beng Seng’s confectionery with this price? Would the selling price 
enable Beng Seng to ‘survive’, based on a sound estimation?
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•	 If the rental of the confectionery shop needs to be taken into consideration, how 
would this affect the selling price of the cake?

•	 How will wastage be factored into consideration in developing the price of the cake?
For modeling tasks, the solver needs to interpret the solution and reflect on the 

practicality or reality of the answer or solution obtained for the task.

Knowledge Required for the Task
Generally, modeling tasks require students not only be proficient in the related 

mathematical knowledge, but also contextual knowledge, which is the knowledge of the 
real world in which this problem is grounded. In the above task, the knowledge required 
consists of the following:

1. Profit = Selling Price – Cost Price;
2. Multiplication of fractions and whole numbers;
3. Proportional calculation;
4. In running a business, one would want to gain profit;
5. Profit should be reasonable to both the consumer and the seller; and
6. Other factors might affect the selling price of a product (e.g. rental and wastage).
Items 4, 5 and 6 are the contextual knowledge associated with the above task on Beng 

Seng’s delight. This is the unique feature of modeling tasks which clearly shows the relevance 
of mathematics to the real world.

Teachers’ Scaffolding
There are likely to be difficulties (or ‘blockages’) that students might encounter in 

modeling tasks (Galbraith & Stillman, 2006; Maaβ, 2006). Students might have difficulty 
understanding the problems, or they might be limited by their mathematical knowledge. 
More importantly, students could also have difficulties making assumptions and identifying 
the key variables in modelling tasks, or they might be deficient in the contextual knowledge 
related to the tasks.   

Thus, teachers should provide the appropriate scaffolding to guide the students 
through the task. We shall illustrate with examples on the significant role that teachers can 
play with reference to the task on Beng Seng’s Delight.

1. Include More Information
In the above modelling task on Beng Seng’s Delight, it is likely that students without 

much exposure to solving real world problems would find too much missing information. 
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Without understanding the problem, it would be difficult to advise Beng Seng on the selling 
price of the cake. At the initial stage of engaging students in solving real world problems, 
teachers might want to include more information to make the task manageable:

Beng Seng opens a bakery shop in Orchard Road. He has a secret recipe 
shown above for his famous chocolate cake. Advise him how much he 
should fix the selling price of a Beng Seng’s Delightful Choco Cake if he 
wants to have a profit of $20 per cake.

In the original task, although it would be desirable to leave to the students to collect 
data on the cost of ingredients (for their exposure to data collection), a table consisting of 
the cost of the various ingredients as in Figure 2 would be useful for beginning students. This 
could help the students to focus on the mathematization part of the task to be completed.  

2. Help Students with the Mathematical Knowledge for the Task
Tasks involving real world applications usually consist of mathematical knowledge 

from more than one topic as shown in the above example. It is thus important that teachers 
provide the students with appropriate scaffolding when their students are “stuck” with a 
particular concept. 

It is strongly encouraged that teachers do not immediately respond to students by 
providing them with the answers or the direct mathematical steps leading to the required 
answers of the task; rather, the teachers’ role in scaffolding should be likened to a laboratory 
technician’s role in the science laboratory in helping to fix the apparatus for the scientist to 
work with the experiment rather than taking over the role of the scientist to carry out the 
experiment! Teachers must be clear that any help provided for the students should be to 
facilitate them solve the mathematical problems.

When students encounter difficulty with the problem, modifying the ideas of 
scaffolding from the Mathematics Problem Solving (Toh, Quek, Leong, Dindyal & Tay, 
2011), different levels of help can be provided:  

Level 1: generic help;  
Level 2: specific help; and 
Level 3: answering specific part of the problem.
At Level 1 help, students are guided to relate to the mathematics behind the calculation 

themselves.  Some examples of level 1 help are shown below.
•	 How do you calculate the profit of the cake?
•	 How is the profit related to the selling price?
•	 With all these ingredients ( for the cake), how do you calculate the cost price of a cake?
•	 What information do you need to calculate the cost price of the cake?
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Level 2 help reaches out to students who are stuck with particular mathematical sections 
that the teachers have identified.  Examples of level 2 help are shown below.
•	 How do you multiply mixed numbers with whole numbers?
•	 If 12 eggs cost $2, how much will 4 eggs cost?
Teachers are reminded that it is advisable to begin with Level 1 help whenever students 

are stuck. This will help them with understanding and identifying the real world constraints 
related to the task.

3. Facilitate the Students to Reflect on Their Answers
Looking back on one’s solution is an important stage of mathematical problem solving. 

This is especially important for modeling, in which a key component is to connect the 
mathematical solution back to the real world. Thus, students must make sense of the 
solution in the real-world context.  

Teachers could invite the students to think over their answer, as in:
•	 Now that you have fixed your selling price to be XX, do you think it is reasonable 

based on the profit that you advise Beng Seng?
Teachers could even challenge their students to change their assumption for the task:
•	 Now, what if you take the rent of the shop into consideration?
•	 How would you factor into consideration the selling price if everyday there is 10% of 

the cakes which could not be sold?

Conclusion 
We have discussed how application of mathematics in the real world could begin with 

using context to a modelling task. Teachers are reminded that the whole idea as discussed 
above is to allow students to connect classroom mathematics to the real world in order to show 
the applicability of mathematics ideas (Zbiek & Conner, 2006; Stillman, 2010).

To begin with, teachers could begin with using relevant examples of real-world problems 
from textbooks, and emphasize that in many of the real-world problems, the numbers and 
answers are not ‘neat’, nor are the answers unique.  Furthermore, lead students to be aware that 
in many real-world problems, the correctness of the answers is dependent on the assumptions 
made.  

Modelling tasks involve both mathematical content knowledge and contextual knowledge. 
Thus, it is also important that teachers are proficient with both content and contextual 
knowledge required for carrying out such tasks. In addition, the pedagogy and scaffolding are 
important aspects for teachers conducting such activities in real-world problems.
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We have presented the conceptualization of a mathematics problem 
solving module (Toh, Quek & Tay, 2008). In designing the module, 
mathematically rich problems were selected to enable students to 
acquire the various aspects of problem solving processes based on Polya’s 
stages. At the initial stage when the module was taught in a Singapore 
secondary school which specializes in mathematical sciences, effort 
was taken to ensure that the problems were sufficiently challenging 
to engage the students to explore the problem solving processes. As the 
module was subsequently introduced to other mainstream schools, 
the choice of problems was re-considered. This paper discusses how the 
choice of the problems changed from the initial phase of the research 
project to the stage of its diffusion to the mainstream schools.

Introduction
We have described the conceptualization of a problem solving module in a Singapore 

school (Toh, Quek & Tay, 2008). The problem solving module was developed as part of a 
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research project carried out by the authors (hereafter “researchers”). The choice of problems 
is a critical part in enacting a problem solving curriculum (Silver, Ghousseini, Gosen, 
Charalambous, & Strawhun, 2005). The problems selected must be mathematically rich 
which could allow students to apply the processes of mathematical problem solving. 

In this paper, we describe how we select the problems for the problem solving 
curriculum in the first Singapore research school, a school specializing in mathematics 
and science, and how, in the context of a design experiment (Middleton, Gorard, Taylor 
& Bannan-Ritland, 2006), some of the problems were retained while others were replaced 
when this module was subsequently diffused to other mainstream schools in Singapore.

Mathematical Problem Solving for Everyone
The problem solving module was developed as part of the research project Mathematical 

Problem Solving for Everyone (MProSE). At its initial phase, the curriculum was 
conceptualized and implemented in the first research school (hereafter we call it MProSE 
research school). This school which specializes in mathematical sciences was used to pilot 
MProSE in an attempt to use the “best-case scenario” method to start our investigation 
with high-ability mathematics students in the school. The researchers believed that the 
test bed for the initialization phase of an innovation should be at the school that is most 
conducive for success. 

MProSE uses the design experiment as its methodology. This methodology appealed 
to the researchers in that it allows for the unique demands and constraints of the schools to 
be met, and, at the same time, the research imposes rigour on the design. The methodology’s 
advocacy of an implement-research-refine iterative approach to educational design holds 
potential in dealing with the complexity of school-based innovations.

Selection of Problems for the Curriculum
The selection of problems for this module formed an important process of designing 

this module as each of the problems selected for this module is used to illustrate the various 
aspects of problem solving based on Polya’s model at various juncture of the module. At the 
initial stage of selecting the problems, the researchers recognized that these problems must, 
in addition be mathematically “rich”, elicit the problem solving processes that are essential 
in handling non-routine problems. In addition, the following four points of reference were 
also taken into consideration:
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1.  the problems were interesting enough for most if not all of the students to attempt 
the problems;

2. the students had enough “resources” to solve the problem; 
3. the content domain was important but subordinate to processes involved in 

solving it; and 
4. the problems were extensible and generalizable.
There are bound to be mismatches between what the assigner wishes to achieve and 

what actually is achieved during the solving process. Although the researchers were careful 
to ascertain if the problem satisfied the above four points of reference, it was recognized 
that these problems had not been tried out by the students yet. Feedback was obtained from 
both students and teachers of the MProSE research school after the first implementation 
in the MProSE research school. Some problems originally designed by the researchers were 
subsequently replaced (Quek, Toh, Dindyal, Leong, Tay & Lou, 2010). Eventually, an entire 
set of 17 problems was developed for the entire module consisting of ten lessons of problem 
solving in the MProSE research school (Toh, Quek, Leong, Dindyal & Tay, 2011a).

MProSE: Problems for the Mainstream Schools
It was found that the students from MProSE research school were generally able 

to demonstrate the use of Polya’s model in solving mathematics problem (Toh, Quek, 
Leong, Dindyal & Tay, 2011b). This problem solving module was ultimately adopted as 
a compulsory component of the school’s mathematics curriculum for all Year 8 (age 13 to 
14) students of the school. 

The usual mathematics curriculum in the MProSE research school stretches the students 
beyond the national mathematics curriculum as the school was not bounded by the Singapore 
national examinations. The students learn more sophisticated mathematical content 
knowledge even at the lower secondary level and are exposed to competition type mathematics 
questions. Furthermore, the students are generally highly motivated in mathematics and 
sciences. These students generally have more mathematical “resources” compared with their 
counterparts from the mainstream schools. Thus, the problem solving module which has 
worked in that school might not warrant its feasibility in the mainstream schools.

A problem solving seminar was organised with a view of inviting teachers from the 
Singapore mainstream schools to participate in the diffusion stage of the MProSE design 
experiment. The seminar disseminated the findings and shared lessons learnt from the 
MProSE research school. Generally, the feedback from the participating teachers from the 
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mainstream schools was positive; the teachers from thirteen schools expressed their initial 
interest to participate in the MProSE project. Subsequently, the MProSE team obtained 
written forms of commitment of participation from four schools, roughly spanning across 
the whole spectrum of performance band, to implement the MProSE problem solving 
module at the lower secondary levels (age 13 to 14).

Problems Replaced for the Mainstream Schools
Prior to the commencement of the project, the researchers and the teachers from the 

participating schools met to discuss the details of MProSE, including the choice of problems 
for the schools. It was agreed that the design of MProSE was relevant to the mainstream 
schools, but some of the original MProSE mathematics problems (Toh et al, 2011a) must 
be replaced to meet the needs of these schools while other problems could be retained. In 
the following subsection, we discuss how the set of MProSE problems evolved as MProSE 
was diffused to three mainstream schools.

Content Not Emphasized in the School Curriculum
The following MProSE problems that were developed in the initial phase for the 

MProSE research school, with the heuristics that each problem is supposed to serve listed 
below the problem statement, were replaced.

Problem 2:  Find the last digit of 1377.
 Heuristics: Consider a simpler problem; Make a systematic list;  

Look for patterns.
Problem 3:  Find the last digit of 19622009 + 20091962.
 Heuristics: Think of a related problem; Aim for subgoal.
Problem 6:  Show that the integer n always has the same last digit as its fifth power.
 Heuristics: Use suitable numbers; Think of a related problem;  

Divide into cases.

These “last digit” questions were manageable by practically all students from the 
MProSE research schools. Through solving these questions, the elements of Polya’s problem 
solving stages could be brought across to students reasonably clearly. These problems were 
typical competition type questions; the content knowledge underlying these two problems 
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is not emphasized in the mainstream Singapore secondary mathematics curriculum. The 
teachers from the mainstream schools felt that these problems were generally not suitable 
for their students as they generally have not been exposed to such questions on number 
theory at the lower secondary school level. In addition, both the teachers and the MProSE 
researchers agreed that the structure of the problems for the problem solving module 
should not be radically different from the questions from the usual school curriculum. 
Consequently, the researchers replaced the three problems with the following, with each 
problem emphasizing the same heuristics as the original corresponding problems.

Problem 2 (New):  Simplify   .
Problem 3 (New):  Find the sum of the positive odd numbers 1 + 3 + 5 + 7 
 + …….. + 2011. Justify your answer.
Problem 6 (New): On a Tuesday, Alice, Bernice and Carol and Dory, met for a movie.  
 After the movie, they made plans for the next gathering. Alice,   
 Bernice and Carol said that they could only go to the movies every   
 6, 3 and 4 days respectively, starting from that Tuesday. Dory said   
 that she could go to the movies every day except on Sundays. After   
 how many days would the four friends be able to meet again for  
 a movie?

Compared with the original Problem 2, the new Problem 2 is not totally unseen by the 
mainstream school students as this question (or a simplified version of this problem with 
10 terms instead of 100 terms) has likely been used in the primary school as an enrichment 
activity on the use of calculators. 

Similarly, the new Problem 3 was adapted from a mainstream school examination for 
lower secondary school. Instead of providing the scaffolding to lead students to observe the 
patterns as in the question from the examination, the solver is expected to work out the 
heuristics themselves. 

The new Problem 6 was adapted from a practice question from a Singapore mathematics 
textbook, with the exception of including an additional condition (that Dory could not go 
for movies on Sundays) which requires students to check the given condition.

Content Too Advanced for General Student Population
In adapting problems to the mainstream schools, the problems for which the content 
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was generally beyond the grasp of the general student populations were replaced by 
questions from which the content is within the secondary school curriculum.

Problem 11:  The base 2 representation of a positive integer n is the sequence                
akak-1 ak-2…..a0, where  n = ak 2k + ak-12k-1 + …..+ a1 21 + a0, and   
ak = 1, and ai = 0 or 1 for i = 0, 1, …., k – 1.  Write down the   
binary representation of the day today and of the day of the    
month in which you were born.

 Heuristics: Use numbers; Consider a simpler problem;  
Look for patterns.

Problem 12:  Weights can be placed on the left pan of a standard two-pan balance to 
weigh gold which is placed on the right pan. Suppose we want to be able 
to weigh gold in any positive integer up to 100 grams. Show that having 
7 weights will be enough.

 Heuristics: Act it out; Use numbers; Consider a simpler problem; Look 
for patterns; Think of a related problem

Problems 11 and 12 were considered to be too difficult for mainstream schools, as their 
students do not encounter binary representation of numbers. These two questions were 
replaced with the following problems, emphasizing the same heuristics as the corresponding 
original problems.

New Problem 11:  Is it true that the sum of two rational numbers is always rational? 
Justify your answer.

New Problem 12:  Can you construct a circle where both the circumference and the 
diameter are integer lengths?  Justify your answer.

These two new problems focus on integers and rational numbers, and also serve to 
enhance students’ understanding of school mathematics in addition to problem solving. 

Context-free Problem
Consider the following MProSE problem on curve sketching.
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Problem 10:  It is given that    .
  
 Sketch the graph of y = 3|x| - 4.

The concept on absolute value function is not emphasized in the lower secondary 
mathematics curriculum. The teachers felt that the content would be beyond the grasp of 
their lower secondary students. From the researchers’ perspective, absolute value function 
was only used as a context to illuminate the heuristics of using suitable numbers (an 
important heuristic) in plotting a graph. This would provide an alternative way to learn 
curve sketching to memorizing the shapes of “standard graphs”.  

On the other hand, this question might be “meaningless” to students, as they do not 
learn much curve sketching at the lower secondary level. More importantly, this problem 
is context-free; its esoteric nature might not bring across the relevance of mathematics to 
students. Mathematics teachers have the common experience that their students want to 
know the relevance of classroom mathematics to their lives. Engaging students in solving 
real-world mathematics problems can thus help to give students the meaning to the 
mathematical content knowledge that they learn (Williams, 2007).

To compromise between the teachers’ concern and the researchers’ emphasis on the 
important problem solving skills for sketching graphs, a contextualized question involving 
curve sketching was introduced for Problem 10.

Problem 10 (New): In a carpark, it was advertised as such: 
First hour parking:  Free 
Subsequent parking:  $1 per hour or part thereof 
Sketch a graph for parking fee versus the number of hours of 
parking. (Adapted from Toh, 2010).

It is clear that sketching the graph in the new Problem 10 requires the same heuristics 
of using suitable numbers and plotting some points as the original Problem 10.
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Problems that were Retained
In the process of adapting the problems for the mainstream schools, many of the remaining 

17 problems were retained. We shall discuss the attributes of three of these problems.

Problem 1:  You are given two jugs, one holds 5 litres of water when full and the 
other holds 3 litres of water when full. There are no markings on either 
jug and the cross-section of each jug is not uniform. Show how to 
measure out exactly 4 litres of water from a fountain. 
Show also the following: 
i. Get 2 litres from 3 litre and 7 litre jugs. 
ii. Get 6 litres from 12 litre and 16 litre jugs. 
iii. Get 12 litres from 18 litre and 24 litre jugs.

It was agreed that this problem is interesting to students as it vividly describes a task 
that students can associate with in real life. Further, the statement of the problem is not too 
difficult for students to understand.

This problem is illustrative in the application of the heuristics of drawing a diagram, 
acting out, guess-and-check, and even formulating the problem using an algebraic equation. 
Further, the statement of this problem shows the importance of understanding the problem 
(viz. the significance of the statement that “there are no markings on the jug and the cross-
section is not uniform). 

The feedback from the mainstream school teachers after initialization of problem 
solving module was that the students were generally excited over this problem. In fact 
the problem was taken from a scene in the movie “Die Hard with a Vengence” where the 
protagonist had to measure exactly 4 litres of water to be placed on a sensor to prevent a 
bomb from going off. The engagement level of students who were shown this scene were 
very high. 

Problem 4:  Two bullets are placed in two consecutive chambers of a 6-chamber 
revolver. The cylinder is then spun. Two persons play a safe version of 
Russian Roulette. The first points the gun at his mobile phone and pulls 
the trigger. The shot is blank. Suppose you are the second person and 
it is now your turn to point the gun at your hand phone and pull the 
trigger. Should you pull the trigger or spin the cylinder another time 
before pulling the trigger?
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The context of this problem excites the students to solve this problem. Students have 
already acquired intuitive idea of chance even in primary school mathematics curriculum, 
although they might not have learnt the formal definition of probability. This problem 
could be solved by the heuristics of drawing diagrams and considering different cases. 

This problem managed to captivate the interest of students of both the MProSE 
research school and the mainstream schools alike in that it involves the students’ making 
decision in an interesting context. However, there was a slight concern raised by the teachers 
that some students were not able to solve this due to their lack of the related contextual 
knowledge (that is, knowledge of how a revolver functions). 

Problem 13:  a) A boy claims that when he left school x and joined school Y, he 
raised the average IQ of both schools. Explain if this is possible. 
b) A striker in football is rated according to the average number of 
goals he scores in a game. Wayne had a higher average than Carlos for 
games in the year 2007. He also had a higher average than Carlos for 
games in the year 2008. Can we say that Wayne must be a better striker 
than Carlos over the years 2007-2008?

This problem is exemplary in demonstrating the heuristics of substituting suitable 
numbers and working backwards. The problem forces the students to think of actual 
numerical examples to support their claims. Furthermore, both the content and the context of 
this problem are relevant to them. It further challenges the students’ intuitive idea of statistical 
averages and encourages them to think more deeply about their knowledge of statistics.

Attributes of Problems Used in Mainstream School
From the researchers’ work of adapting MProSE problem solving module to the 

mainstream schools, the problems that were used in the mainstream schools fall under one 
of the following categories:

•	 The problems are concrete and could engage students in some sort of hands-on 
activities (problems 1 and 4);

•	 The context of the problems involves students’ interest or immediate surrounding 
(new problem 10, problem 13);

In addition, the mathematical content knowledge of the problems used in the MProSE 
programme is not too far-fetched from the national school mathematics curriculum.
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Conclusion
In an effort to introduce the innovative MProSE problem solving from a specialized 

school to the mainstream schools, the researchers have retained or replaced the mathematical 
problems discussed above. Taking note that since the MProSE program highlights teaching 
about problem solving, the researchers were mindful that the selected problems were 
subordinate to the problem solving processes that are expected to be developed in the 
students. Thus, the problems could be replaced with those whose content, context and level 
of difficulty suitable for the students. As the MProSE research project evolves and diffuses 
to more mainstream schools, it is certain that the mathematical problems will be further 
modified or adapted to meet the needs of different audiences.
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Introduction 

The Trial
The VCAA is conducting a small-scale three year trial (2011 – 2013) for computer-

based delivery and student response to the extended answer component of Mathematical 
Methods (CAS) Examination 2 (HREF1). The computer algebra system (CAS) 
Mathematica is being used to deliver this component of the examination, as a computational 
tool, and for collecting student responses to this assessment. The trial is being conducted 
in seven schools across government, catholic and independent sectors and aims to develop 
and support effective alignment between the use of technology in curriculum, pedagogy 
and assessment. Mathematica (HREF2) can be used to develop interactive mathematical 
documents, called notebooks that integrate text with ‘live’ mathematical computations 
(calculations, tables, graphs, diagrams, symbolic expressions).This paper provides illustrative 
examples and discusses some implementation challenges and ways of addressing them.
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Familiarity and Comfort
The introduction of a computer-based software platform for CAS technology in the 

classroom presents a significant change from the use of a hand-held calculator, and poses 
various challenges as well as benefits for teachers and students alike. As with anything new 
or different there will naturally be apprehension and anxiety amongst students and teachers. 
To successfully manage such a transition this must be explicitly acknowledged and addressed. 
Empowering students with a basic understanding of Mathematica enables them to overcome 
their apprehension and anxiety and use it effectively for working mathematically in the 
classroom and in technology enabled assessment. Based on experience of two trial school 
teachers, we outline some approaches for facilitating the transition process by considering 
the issues of: managing perceptions; diagnosing common problems; creating and utilising 
assistance sheets; and the transition to student development of their own notebooks, for 
example, summary notes. 

Mathematica is a powerful and flexible tool that is widely used in industry, academia, 
business and finance, and research as well as in education and there is a wide community 
of users and applications. However many students are unlikely to be familiar with such 
software and the style of interface. 

A Positive Motivation
Where students are already familiar with handheld CAS devices, they will be wary of 

switching to computer based CAS software. As an educator it is important to put forward 
the benefits of such software both by discussion and demonstration. For computer based 
CAS software benefits include a large screen and good visual representation; easy keyboard 
and palette input; and powerful and quick processing/computational capability. The 
ability to cut and paste and readily access the usual desktop environment functionality is 
also convenient. Students will appreciate these but nonetheless still need to know how to 
readily apply commands such as Solve and Plot. If students have not previously used 
a CAS calculator, this process will be ‘new’ for either technology. If they have used a CAS 
calculator previously they will find aspects of the command interface similar. 

As a simple example, students using a hand-held device would employ a combination of 
menu selection and keypad entry to do something like the computation shown in Figure 1.
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Figure 1. Sample hand-held computation

Using Mathematica the student could carry out the same computation by typing in the 
required expression directly and evaluating via the keyboard (Shift+Enter) or alternatively 
use a palette for entry and then evaluating as shown in Figure 2.

Figure 2. Sample Mathematica computation

The Quick and Easy Approach
An aspect that will attract interest (once students are familiar with it) is the easy 

approach to defining and working with a function. This can be done on handheld devices, 
but tracking and changing is convenient using the software. Once a function is defined it 
can be called by name and used in various ways as shown in Figure 3.
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Figure 3. Defining two functions and drawing their graphs on the same set of axes

Related equations can be readily solved, as shown in Figure 4.

 

Figure 4. Solving for the x coordinates of the points of intersection of the graphs of f and g

Existing expressions can be readily copied, edited and re-evaluated, as shown in Figure 
5, which is based on the last evaluation in Figure 3, editing the function and including an 
axes labelling option:



Mathematica Notebooks as Pedagogical and Assessment Tool

128

 

Figure 5. Plot of g(x) – f(x) evaluated after editing earlier computation

Manipulating a Situation
Mathematica is not just a powerful software version of a ‘desktop calculator’ although 

it can certainly be used in this way as shown in Figure 6.

Figure 6. Evaluation of e20 to 1000 significant figures.

A useful way to introduce students to a broader view of its use is to work with previously 
developed notebooks (in which computations can be readily edited and re-evaluated) to 
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illustrate the behaviour of a family of graphs. As a simple example consider a family of 
graphs of the form y = mx + c. Using the Manipulate functionality one can readily 
illustrate the effect of varying m and c and compare it with the graph of y = x, as shown in 
Figure 7.

 

Figure 7. Dynamic exploration of linear graphs using  Manipulate

Diagnosing Common User Problems
The first half year of using Mathematica from scratch in a transition context in the 

classroom can be fairly challenging, especially when students are unfamiliar with the use of 
software as enabling technology, and have already developed some facility with calculators. 
Students feel hesitant and the teacher is likely to be in the process of developing their own 
confidence and familiarity with using the software. While a teacher can nicely demonstrate 
judiciously chosen examples during whole-class instruction, trouble shooting for students 

“why isn’t mine working?” can initially be overwhelming. Even minor errors nonetheless 
affect or prevent a desired computation from taking place, and these are by their very nature 
not always easy to see and diagnose. After a while, the teacher starts to more consistently 
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use the built in Mathematica colour key to troubleshoot and becomes better at resolving 
student problems on the spot. The second year of introducing students to Mathematica 
proceeded much more smoothly. Students were taught how to trouble-shoot their own 
problems from the start, resulting in student confidence and a general “hey Mathematica 
is not bad” ambience. The following are a few ideas on teaching students to trouble-shoot.

Use of Palettes
Mathematica palettes provide an easy way to use correct syntax. During the initial half 

year of introducing the software one teacher suggested students utilise only the palettes to 
input commands. While convenient for some, this resulted in less attention to learning 
required basic syntax, and hence a less robust and independent student trouble-shooting 
capability. With the second group of students the same teacher introduced Mathematica 
with a combination of palettes and direct keyboard input. The teacher would give examples 
on the board where the palette options were shown, but typed in the actual input for 
evaluation. This gave students the option of choosing which approach to use as applicable. 
Less confident students tended to use the palettes almost exclusively and found trouble-
shooting more challenging, they were also less inclined to use Mathematica for computation 
and often used by hand computation instead. The majority of other students generally 
preferred to type input for evaluation directly in most cases, rather than rely on the palettes, 
and referred to the palettes mainly when they had forgotten the relevant syntax. These 
students quickly picked up on the specific uses of brackets, commas, operations and the like 
and could trouble-shoot with confidence.

Palettes can also be a vehicle for students to explore aspects of what Mathematica has 
to offer, for example, different options for Plot, such as including grid lines or graphing 
with thick dotted curves. One group even went as far as setting up gridlines so that each 
line was a different colour. Fun projects such as having students draw a colourful smiley 
face or sunset provides a useful context for them to investigate all the options within the 
palettes on their own, and enhances student understanding of the basic syntax structure. 
This utilises combinations of a variety of graphs of linear and non-linear relations, Figure 8 
shows the ‘eyebrow’ component and final image for a ‘smiley face’:
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Figure 8. Graphs of ‘eyebrows’ as part of a ‘smiley face’

Colour Diagnostics
While it is difficult to demonstrate colour changes within a black and white print 

environment, it is nonetheless helpful to note some of the key colour diagnostics available 
in Mathematica. To begin with, any predefined commands, such as Plot or Solve, will 
be written in black. One way to highlight this to students is to start by typing “Plo” in 
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Mathematica. This will come up in blue typeface. Once the final “t” is written, the blue 
Plo will turn into a black Plot. This is useful to point out to students when they are 
starting to assign variables. Here are two examples of what a student may type to solve  
x + y = 2  and 2x + 3y = 1  simultaneously.

The inputs from both examples are identical, and yet the solutions are different. What 
one doesn’t notice as a beginning Mathematica teacher is that the student has, several 
lines previously, and hence no longer visible on their screen, defined y as 3. Thus, for the 
second computation, Mathematica is trying to solve a set of equations for which one of the 
variables is a constant. The error could have been avoided had the student noticed while 
typing in the equations, y did not appear the unassigned blue colour, but in black. What 
makes these issues so difficult is that once the user has specified y to be a variable, it will 
turn from blue/black to green. Thus when the entire Solve command is completed, both 
Solves really are identical, even down to the colours.

Taking note of whether a letter changes from black/blue to green when specified as a 
variable can help avoid errors such as

 

The variable in the equation to solve is a, yet Mathematica has been told to solve for 
the letter x and we are given the empty set as the solution. In colour the letter a appears 
in blue while the letter x appears in green. Students should be taught from the start when 
using commands such as Solve and Plot requiring variable specification that variables 
need to be green.

This can help with the common problem when students begin to use CAS of forgetting 
to include spaces or symbols between two letters to represent implied multiply. Below are 
two attempts at trying to define the quadratic ax2. In the first attempt, a space is included 
between the a and x. The a is coloured blue and the x is coloured the same green as the x 
within f[x_]. In the second attempt, there is no space between the a and the x. Both the 
a and x remain blue while the x within f[x_] is green.
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 There is a range of useful diagnostic tools, however they do require some attention to 
be properly utilised. It is helpful to become familiar with using the built in Documentation 
Center which enables one to make a query and have a reference provided from a digital 
book, along with example evaluations which can be copied directly into an existing 
notebook and used, as shown in Figure 9:

 

Figure 9. A Documentation Center query

Use of Mathematica in the Junior Year Levels
As more and more students have access to their own laptops in the classroom, 

Mathematica can offer a smooth introduction to the world of CAS. In the first instance, 
students should start with a previously developed worksheet (as a notebook file) where 
only one or two new commands directly related to the mathematics being studied are 
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incorporated and taught within the worksheet itself. In general, they should not simply be 
given a blank Mathematica screen and asked to use it as a computational tool. For example, 
a group of Year 7’s completed a fractions task using Mathematica where students were 
required to learn that Shift + Enter would calculate an input and Ctrl + ForwardSlash would 
generate the fraction template–. The instructions for these commands were included within 
the task itself so that the learning of the technology was not separate and disconnected 
from investigating fractions. While the task was generally well received by staff, they did 
take some convincing to use it in the first place. Weaker students had difficulty reconciling 
the fact that Mathematica could do the computation for you and did not understand that 
the task was not asking them how to get the answer, but rather required them to understand 
what the answer meant.

Investigative tasks can easily be created due to the flexibility Mathematica gives you 
when writing your own programs. As part of a task on ratios, Year 8 students were asked to 
distribute water between four tanks according to certain ratios. An interactive notebook, as 
shown in Figure 10, was created in a Mathematica notebook enabling students to distribute 
the water so that they could electronically check the validity of their problem solving 
strategies. While designing these types of activities is the next step beyond basic familiarity, 
it does highlight the potential and freedom of what the software offers.

Figure 10. Teacher constructed dynamic activity in a notebook
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Finding an Effective Balance
As Mathematica has many commands teaching only a limited set of relevant commands 

as required for the purpose at hand makes good sense (users can also generate their own 
palettes). A strategic approach when introducing commands is also important – too few 
and the students are limited in what they can do, too many and then they can become 
overwhelmed. There is no ‘right’ balance for all situations however what is effective in a 
given context will depend on the group, their level of competence, and the confidence and 
proficiency of the teacher. 

Creating and Using Assistance Sheets (Student Notebooks)
Initially students may not see the value in creating their own assistance sheets, so 

teachers will need to provide examples and encourage students to progressively develop 
their own portfolio of Mathematica notebooks. On completing their first assessment task, 
or a practice task, then having an assistance sheet demonstrated by the teacher the attitude 
shift is noticeable. For technology enabled assessment students are allowed to freely use 
assistance sheets. The ability to readily develop a library of self-created commands, hints, 
examples and the like is a major benefit of CAS software such as Mathematica. The ease of 
access to such materials can be high-lighted as something that will save time and assist them 
greatly both in the class and for assessments.

A fundamental aspect of Mathematical Methods (CAS) Unit 1 is to understand 
the properties of polynomial functions and their graphs. An important skill is to be able 
to fit a suitable function to a set of data points. Using their understanding of functions, 
simultaneous equations and some other general skills students should be able to determine 
an equation that fits the data. Initially this should be done from first principles, however 
once students have learnt the basic processes and skills, they can then proceed to use the built 
in Mathematica functionalities. One such functionality Fit finds a linear combination of 
specified basic functions. It is important that the technology is not just used to obtain a 
result, but to explore the relationship between data and a model. For example, as part of 
an analysis task students might explore different modelling functions for a base-jumping 
context, as shown in Figure 11. The data points were supplied for students, with the image 
providing visual scaffolding for the problem.
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Figure 11. BASE – jumping

Once the data set has been defined it can be called within the Fit command and a 
function generated. A graph can be used to get a visual impression of goodness of fit, as 
shown in Figure 12.

 

Figure 12. Graphical inspection of a model function

Analysis at Year 11 will generally be visual (or based on a simple numerical measure) and 
contrast this model with other simple possible function models such as a linear function or a 
cubic function. Summary statistics for goodness of fit can also be obtained using Mathematica.
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Introduction 
Mathematica (HREF1) is computer algebra system (CAS) software that can be used 

as enabling technology to tackle various Mathematical Methods (CAS) Examination 2 
multiple choice questions. A Mathematica notebook is an interactive digital document 
(file) that incorporates text, graphics and numerical, graphical and symbolic computations. 
They provide an excellent medium for an analysis summary of multiple choice questions by 
topic and type, across several years of past examination papers (2006 – 2011). This can be 
used to develop solutions by various methods and comment on aspects of the mathematics 
involved. Summary information about percentage of correct responses can also be included, 
along with hyperlinks to the VCAA website to access past papers and corresponding 
examination assessment reports (HREF2). These notebooks would be a valuable resource 
for student review and practice of past examination questions, and similar notebooks 
could also be developed for item response analysis tasks as part coursework assessment for 
Unit 4. Mathematica notebooks can be accessed by students even if they don’t have access 
to Mathematica by means of the free CDF Reader from Wolfram Research (HREF3). 
Alternatively they can be converted to PDF format but do not have interactive text or 
computational capability in this format. Teachers and students could use these as a starting 
point to develop similar resources as e-documents for other CAS.
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Structure
Four summary notebooks have been developed covering:
•	 functions, graphs and algebra;
•	 differential calculus and applications;
•	 integral calculus and applications; and
•	 probability
All the Examination 2 multiple choice questions have been allocated to one of these 

based on their principal focus, and copied into the relevant summary notebook as a PDF 
snippet. Each has been divided into a couple of key topics, and the type of question and 
year of paper identified. All past Examination 2 multiple choice questions have in this 
way been mapped into one of the four summary notebooks. This mapping is an activity 
that it would be useful for students to undertake themselves before being presented with a 
summary notebook or similar where this has already been done. 

In this way they will likely strengthen their ability to carry out similar identification 
of questions during the reading time of the examination they actually sit. In the summary 
notebook, computations that support one or more solutions approaches and related 
commentary are shown, as applicable. The percentage of students selecting the correct 
response is also included, along with a summary of the relevant Mathematica functionality. 
Figure 1 shows the introductory section of the calculus anti-differentiation and applications 
summary notebook:

Figure 1. Introductory section of a summary notebook
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Some Examples

Functions, Graphs and Algebra
The following discussion covers several examples from across the four summary 

notebooks, and indicates where the use of technology may be helpful. Consider Question 
18 from the 2012 Mathematical Methods (CAS) Examination2, shown in Figure 2, for 
which 52% of students correctly answered (D):

Figure 2. 2011 Examination 2 – multiple-choice Question 18

This question can be done without the use of technology – the graph of the 
corresponding function must have two turning points, so D is the only alternative with 
the correct form. However an empirical version of the same sort of thinking can be 
used, plotting graphs for judicious choices of w, for example w = 2, three horizontal axis 
intercepts eliminates A and E, while w = 10, one horizontal axis intercept and w = 30, also 
one horizontal axis intercept, eliminate C and B respectively, as shown in Figure 3:
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Figure 3. Graphs for w = 2, w = -10 and w = 3

An interesting variation on this analysis is to use the dynamic capability of the CAS 
and ‘see’ where the function has or doesn’t have the required behaviour as w is systematically 
varied through integer values from -10 to 27, with the case for w = 7 shown in Figure 4.
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Figure 4. Mathematica dynamic manipulation

While not required to answer the question, the interval endpoints of -7 and 25 can be 
explicitly determined, as shown in Figure 5:

Figure 5. Identifying endpoint values for w 

Since f[1] = 7 + w < 0 for one solution, w < -7. Similarly, since  
f[5] = -25 + w > 0 for one solution, w > 25. The summary notebook also 
indicates relevant Mathematica functionality from built in palettes as shown in Figure 6.
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Figure 6. Relevant Mathematica functionality from palettes

Commentary can also be included, as shown in Figure 7.

Figure 7. Commentary for Question 18

Probability
Consider Question 12 from the 2010 Mathematical Methods (CAS) Examination 2, 

shown in Figure 8, which 44% of students answered correctly (B):

Figure 8. 2010 Examination 2 – multiple-choice Question 12

This problem is modelled by a random variable x ~ Bi (15, 0.6) and the probability can 
be computed in several ways, from first principles, using the probability density function, 
and using the cumulative distribution function as shown in Figure 9.
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Figure 9. Three ways of computing the probability

Students were much more successful (71%) with a similar ‘fair coin’ question where  
X ~ Bi (12, 0.5) and Pr(X≤ 4) was required, possibly because the first principles computation 
was simpler for students who used this approach, the complexity of the other two methods 
doesn’t really change.

Calculus
Related-rates are an area where students seem to be only moderately successful, for 

example, consider Question 10 from the 2006 Mathematical Methods (CAS) Examination 
2, shown in Figure 10, which 48% of students answered correctly (A):

Figure 10. 2006 Examination 2 – multiple-choice Question 10

While this is straightforward to compute as V ′(r) × r′(t), as shown in Figure 11, some 
students may not have recognised that the second rate was a given constant rate, or possibly 
not have remembered the volume of a sphere formula correctly, or did not look it up from 
the formula sheet. 
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Figure 11. Computing V ′(r) × r′(t)

Students did slightly better on Question 16 from the 2008 Mathematical Methods 
(CAS) Examination 2, shown in Figure 12, which 52% of students answered correctly (C):

Figure 12. 2008 Examination 2 – multiple-choice Question 16

This involves a constant rate and a reciprocal rate, where   
as shown in Figure 13.

Figure 13. Computing  
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For this question the answer can essentially be written down from mental computation.  
The average value of a function over an interval is a simple application of the  

definite integral. Consider Question 8 from the 2006 Mathematical Methods (CAS) 
Examination 2, shown in Figure 14, which 59 % of students correctly answered (D). 
If students know that the area under the graph of the basic sin function from 0 to   

is one unit, then by symmetry the average value of the cos function over the same interval 

is 

Figure 14. 2006 Examination 2 – multiple-choice Question 8

The majority of students were able to make this connection or correctly formulate as 
a definite integral and carry out the corresponding computation, as shown in Figure 15:

Figure 15. Evaluating definite integral for average value of a function over an interval
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Multiple Choice Item-Response Analysis Task
The notebook format can be used to develop and present an item response analysis task 

for coursework assessment. This could include:
•	 cut and paste of selected items according to area of study/content focus 
•	 noting the correct alternative and asking students to justify 
•	 asking students to identify conceptual and/or working errors associated with one 

or more incorrect alternatives
•	 asking students to respond to a variation on a  given item
•	 asking students to develop a variant item of their own and explain why the 

incorrect alternatives have been chosen

As an example, a selected topic might be the relationship between the graph of a 
function and the graphs of its derivative function.  From time to time one of the latter 
multiple choice examination questions is of this type, sometimes given the graph of 
the original function the students is asked to find the graph of the derivative function, 
sometimes the other way around. For Question 19 from 2010 the stimulus material is 
shown in Figure 16:

Figure 16. 2010 Examination 2 – multiple-choice Question 19

As well as the graph of an anti-derivative function, the alternatives can include inverse, 
reciprocal, transformed and derivative graphs of the given function. The student could be 
given the correct alternative and asked to justify why this is the case by working from the 
graph of the derivative (what do the zeroes and sign of the derivative mean for a graph of 
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the original function), checking by working from the solution graph (finding it’s derivative 
graph); and checking by attempting to explicitly construct a possible model, as shown in 
Figure 17:

Figure 17. Explicit construction of possible solution

Alternatively, the student could be given the stimulus material and asked to construct 
four incorrect alternatives, with a comment as to what conceptual or other error  
each one corresponds.
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GeoGebra as an open-source Dynamic Geometry Software has 
been gaining popularity amongst secondary school mathematics 
teachers in Singapore. However, the use of  GeoGebra in our 
primary school mathematics teaching has been rather minimal 
and rare. This paper demonstrates and explains with a few suitable 
problems on geometry and ratio how GeoGebra constructions and 
applets can be used to engage pupils in mathematical problem-
solving and explorations in an interactive learning platform.

Introduction and Literature Review
The use of information and communication technology (ICT) in the Singapore 

school curriculum began in a big way with the launch of the first ICT Masterplan (MP1) 
for education in 1997 and followed by the second ICT Masterplan (MP2) in 2002. By the 
end of MP2 in 2008, the integration of ICT in the Singapore education system and schools 
has reached a considerable level of maturity and complexity – each school is equipped with 
appropriate ICT infrastructure and   well-trained technical support staff assisting teachers 
to implement ICT-based lessons. Today, while we are still in the midst of implementing 
the third phase of the ICT Masterplan (MP3) we have begun to notice that at least three 
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of the four barriers (accessibility to computers, openness of software, curriculum scope and 
ICT competence of teachers), identified by Brown (2001), for implementing ICT in the 
classrooms have been significantly lowered in most schools.  Under MP3, there is a demand 
for developing our teachers’ technological pedagogical skills of integrating ICT into 
everyday classroom teaching with a vision of harnessing the strengths of ICT to transform 
learners and develop their skills for self-directed and collaborative learning (Ministry of 
Education, 2008).

In the area of mathematics education, with the innovations of Dynamic Geometry 
Software (DGS) tools in the early 90s, DGS has become an important platform for teachers 
to adopt a computer-based and student-centred pedagogy for teaching Geometry. DGS is 
an open tool that comes with functionalities that are useful for facilitating and enhancing 
students’ learning. In particular, the following two key characteristics are the strengths 
of DGS tools that would benefit teaching and learning. (a) Interactivity – in a DGS 
environment, a learner can actively manipulate a mathematical object through “dragging” 
without affecting the properties of the object. These dynamic and real-time interactions 
between the software and learners promote curiosity and learning. Indeed, interactive 
activities that are related to specific learning objectives and designed to match with pupils’ 
cognitive levels can help to engage pupils in their learning (Kalyuga et al., 2003). (b) 
Visualization – visual reasoning enhanced by the interactivity and the dynamic nature of 
a DGS tool is especially useful for primary school pupils. The importance of visualization 
and visual reasoning in students’ learning especially at the beginning of a topic has been 
emphasized by Bishop (1989) and Arcavi (2003) amongst many other researchers. Mason 
(1992) regards visualizing as “making the unseen visible” which would allow students to see 
the “abstract” being made concrete which helps to reduce the cognitive burden of learning.

Geometer’s Sketchpad (GSP) is one of the leading and earliest DGS tools. It   was 
introduced to Singapore secondary school mathematics teachers in the mid 90s and has 
since become very popular amongst secondary mathematics teachers. Some local studies 
showed that GSP was beneficial for students who were learning Geometry (Leong & 
Lim, 2003; Ho & Leong, 2010). In addition, designing a DGS-based mathematics lesson 
is considered one of the core ICT skills that pre-service secondary mathematics teachers 
at the National Institute of Education should accomplish. Indeed, the usefulness and 
affordances of GSP have helped secondary school teachers in Singapore to alleviate one of 
the barriers of integrating ICT into mathematics teaching, identified by Brown (2001) as 
the availability of software which emphasizing learning mathematics.

In the past few years, amongst a few new and powerful ICT tools developed for 
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mathematics teaching and learning, GeoGebra is one of the outstanding and popular ones. 
GeoGebra, being a free software and having a very large user community offering free 
online teaching and learning resources (for example from the GeoGebraWiki website), has 
become one of the most popular and important teaching tools for mathematics teachers 
around the world. Apart from the standard DGS functionalities, GeoGebra comes with 
many algebraic and data analysis tools that make multiple representations of a mathematical 
object easier. One of the important “break-throughs” and strengths of GeoGebra is that 
its built-in algebraic commands can help teachers to “programme” the constructions. In 
addition, user-friendly interactive tools (such as sliders, checkbox etc) allow teachers to 
draw students’ attention on the task and at the same time offering flexibilities for students 
to take control of their own learning. 

Anecdotal evidence collected from classroom observations have shown that in 
Singapore there is an increasing number of secondary mathematics teachers developing 
resources for GeoGebra and using them for teaching. However, the use of GeoGebra at 
the primary school level is rare. In fact, the types of ICT tools being used in our primary 
mathematics classrooms have been confined to using on-line resources or specially-made 
content-based CD-Roms. We suggest that primary school mathematics teachers should 
also explore how the strengths and features of GeoGebra could be employed to facilitate 
pupils’ learning and develop them into self-directed learners. Indeed, a study by Yves and 
Carole (2009) revealed that GeoGebra helps primary school pupils to take on an active role 
in their learning process. 

Examples of Using GeoGebra in Teaching   
We should now present a few mathematics problems that were used in our exploratory 

study on how GeoGebra can be used as a pedagogical tool in supporting teaching and 
enhancing pupils’ learning. The study was conducted in a primary 5 mathematics class (40 
pupils) of a school in which the 2nd author is teaching. In this paper, we would not discuss 
pupils’ responses to the GeoGebra-supported worksheet tasks that we designed. Instead we 
would focus on describing and discussing how these tasks could be used to enhance pupils’ 
learning.

Questions 1 and 2 (Angle Problems)
The problems were modified from one of mathematics papers of the Primary School 

Leaving Examination (PSLE) - our national examination for all our primary 6 pupils. The 
geometrical figure shown in Figure 1 was converted to a GeoGebra applet. Since the pupils 
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have not been properly trained to use GeoGebra, we prefer to use the GeoGebra applet as 
it contains only the essential constructions on the screen. The pupils were guided to run the 
GeoGebra applet before they answered the question on the worksheet. 

Figure 1. Question 1 in the worksheet.

Figure 1 shows how instructional scaffoldings in the forms of “fill-in-the blanks” and 
guided steps are used to lead pupils to “uncover” an invariant property - the existence of 
an isosceles triangle that is inherent in the figure so that they could find the angle DAE. 
Using GeoGebra as a learning and teaching platform, teachers could now pose problems 
in an interactive DGS environment. These problem tasks can also be supplemented with 
appropriate cognitive scaffoldings in the form of instructions or guides which can be shown 
or hidden on the computer screen via check-boxes. Thus, a traditional and static geometry 
problem can now be turned into a dynamic one which allows pupils constructing their own 
knowledge by visualizing and investigating the geometrical object through “dragging”. With 
a little proficiency of using some basic GeoGebra tools or GeoGebra apples, primary school 
pupils would not be passive listeners in a geometry class anymore as they could carry out 
independent and self-directed learning if the GeoGebra-supported tasks are well-designed 
with appropriate on-screen instructions. In addition, to avoid pupils dragging those objects 
that would probably mess up the constructions and disrupt learning, GeoGebra allows 
teachers to “Fix an object” (under object property) so that pupils cannot move these objects 
that are being “fixed”. 
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GeoGebra allows teachers to modify or alter an existing construction easily. We 
constructed a similar diagram but with an equilateral triangle being drawn inside the square 
in Question 2 (Figure 2). Our intention is to ascertain if  pupils could apply what they have 
learnt in Question 1 (making use of an isosceles triangle) to solve the question without any 
scaffolding steps. After the pupils have solved the problem, they would be allowed to check 

their answers using the pre-constructed GeoGebra applet. 
Figure 2. Question 2 in the worksheet.

Question 3 (Application Problem)
Mathematic modeling and applications of mathematics are two main foci of our 

mathematics curriculum across all grade levels from year 2013 onwards. It is therefore 
important to let our primary school pupils experience a simple “modeling task” in the 
form of applying mathematics to solve a real-life problem. The statement of the problem 
is as follows: 

You are the engineer of a factory. One of the customers want to construct 
a glass container in the shape of a cuboid with height 4 unit long with 
stainless steel frames (as shown in the diagram). In order to cut cost 
(stainless steel is expensive), the requirement of the customer is:

a.  the perimeter of the rectangular base must be fixed at 
12 units;

b.  the height of the container is 4 units and 
c.  the container must have the largest volume.

You should record your investigations in a table shown below.

AB BC Volume of the cuboid formed Total surface area (assuming open top)
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This tasked was designed with the use of GeoGebra applet in mind. The pupils were 
instructed and guided to access the webpage that runs the applet shown in Figure 3. 

Figure 3.  GeoGebra applet for Question 3.

A slider named AB with an incremental value of 0.5 (this is intentional so that pupils 
would have lesser values to explore) would allow pupils to change the dimensions of the 
rectangular base. They were reminded to record their observations and perform some 
calculations in a table provided in the worksheet. Making pupils record and calculate the 
volume and the total surface area of the cuboid would enable them to experience that even 
the perimeter of the base is fixed at 12 units, different lengths of AB and BC would still 
affect the surface area and volume of the cuboid. We hope that this interactive and “hands-
on” activity would stimulate pupils’ interest in applying mathematics to solve real-life 
problems. The cuboid on the GeoGebra screen was constructed with an intention to let 
pupils visualise how the dimensions of the base affect the volume of the cuboid. However, 
this dynamic 3-D diagram also created confusion for some pupils who asked why the shape 
of the base is no longer a rectangle even though the area of the base A’B’C’D” is deliberately 
shown on the screen. 

Question 4 (Ratio Problem)
At our primary school level, solving arithmetic word problems using heuristics such 

as systematic-listing, guess-and-check, working backwards and especially drawing model 
diagrams is a common and essential classroom activity for engaging students in mathematical 
problem-solving. In the model-drawing approach, rectangular bars (bar diagrams) are used 
to represent the quantities and relationships between different quantities in a problem. 
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Suitably drawn bar diagrams are intended to assist and enable pupils to concretise and 
visualize the abstract components that are shown or inherent in the problem thereby 
helping pupils to formulate solution steps. However, drawing bar diagrams may be tedious 
and time-consuming for some problem situations. The following arithmetic word problem 
is used to illustrate how teachers can use dynamic and interactive bar diagrams constructed 
in GeoGebra to assist and enhance their teaching.
 

“A sum of money was shared between 3 pupils A, B and C. Pupil A 
received 1/4 of the total sum of money and the remainder was shared 
between pupils  B and C in the ratio 3 : 2. Find the ratio in which the sum 
was shared between pupils A, B and C.”

As primary school pupils in Singapore do not learn sufficient algebra 
to solve a word problem like this, a common approach to solving this 
problem in our mathematics classrooms is by drawing model diagrams 
as follows:

Figure 4. Bar diagrams for Question 4.  

Two GeoGebra text input commands, Polygon and Sequence allow teachers to 
construct a series of rectangles recursively. For example, the first bar diagram in Figure 4 is 
generated by: Sequence[Polygon[{(k*a /n, 1), ((k + 1)* a / n, 1), ((k + 1)* a / n, 2), (k* a / 
n, 2)}], k, 0, n - 1] where the value of a is 9 units (a is the total length of the bar diagram and 
n is the slider value that gives the number of subdivisions of the bar diagram).

In a conventional classroom teaching, teachers would interpret the fractional quantity 
1/4 and draw the first bar diagram as shown in Figure 4 followed by explaining that the 2nd 
bar diagram must be “split” into 5 equal parts in order to obtain the ratio 3 : 2. Obviously, 1 
unit quantity of money for pupil A and 1 unit quantity of  money for pupils B and C (in the 
2nd bar diagram) are not the same – so it is not possible to find the answer from Figure 4. In 
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a non-ICT teaching environment, a teacher would probably have to re-draw and sub-divide 
the bar diagrams further in order to make comparison again. 

With the use of GeoGebra, a new pedagogy would emerge. Teachers would construct 

a GeoGebra file beforehand in which two sliders (named m and n in Figure 5) can be used 
to create different sub-divisions of the original bar diagrams. 
    Figure 5. Adjusted bar diagrams with more subdivisions.

We should allow pupils to drag the sliders until they create a suitable number of sub-
divisions of the bar diagrams so that each rectangle in both bar diagrams align nicely which 
means that the length of each unit block in the first bar diagram is the same as the length 
of each unit block of the second bar diagram as shown in Figure 5 above. The action of 
interacting with the sliders and visualizing how the lengths of the bars change with the 
slider values would help students to understand the meaning behind creating an equivalent 
fraction (3/4 = 15/20 in the first bar diagram) and the equivalent ratio (3 : 2 = 9 : 6 in the 
second bar diagram)–that would be extremely useful for pupils to acquire the conceptual 
understanding of how this problem is solved.                                                          

After explaining how the problem can be solved by using the two bar diagrams, teacher 
should relate the concept of aligning the blocks nicely (a form of pictorial representation) 
to an abstract form of representation based on ratios of the quantities. More explicitly, 
teachers should explain that the total number of units represented by the sum of money 
for Pupils B and C together in the first model and the second model must be the same 
(identifying the invariant quantity in the problem) – that is the 3 units in the ratio  1 : 3 = 
amount for A : amount for B and C  and  the total 5 units in the ratio 3 : 2 = amount for  
B : amount for  C  represent the same amount of money given to pupils B and C together. 
The concept of equivalent ratios given by 1 : 3 = 5 : 15  and  3 : 2 = 9 : 6 will make the 



Ho Foo Him, Koh Cher Hern

157

total amount of money received by pupils B and C to be 15 units (9 units for B and 6 units 
for C). The dynamic nature and interactivity of the Geogebra’s constructions of the bar 
diagrams establish a visual representation of the invariant quantity manifested by the two 
ratios – which is the key concept involved in solving the problem. 

Conclusion
In this paper we have demonstrated how a pupil-centred task (Question 1) can be 

designed in a GeoGebra environment to enhance the teaching of certain mathematical 
concepts and techniques. If Question 1 could elicit pupils’ understanding of the existence 
of an isosceles triangle in the figure, it would be helpful for them in solving Question 2. At 
the primary school level, the main objective of Question 3 is to let students experience how 
mathematics can be used to solve a real-life problem. Though this maximization problem is 
more suitable for secondary school students, it can be brought down to the upper primary 
level with the use of GeoGebra and some simplifications. In fact close to 75% of the pupils 
of the class obtained the correct answer for the maximum volume. We hope that the process 
of calculating and recording the total surface area and the volume despite the perimeter 
of the base being fixed would give these primary school pupils the idea of co-variation 
between two quantities. Using interactive GeoGebra bar diagrams for Question 4 helps 
teachers to explain why equivalent ratios have to be used to solve the problem and make 
pupils understand this concept by visualizing how the alignment of the rectangular blocks 
in the two bar diagrams is achieved. In conclusion, we feel that using GeoGebra-supported 
mathematical tasks at the upper primary school level coupled with a pedagogically sound 
and well-designed worksheet has the potential to enhance teaching and develop pupils’ 
mind for a self-directed and inquiry-based learning - to achieve the visions of our ICT 
Masterplan 3.
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Previous studies have found that low achievers make considerable 
progress when they engage in tasks that foster higher order thinking 
skills. In this study, three higher-order thinking tasks related to 
the topic of fractions were assigned to students of mixed ability 
in Primary 3 (Singapore). We are interested to find out whether 
these tasks are effective in helping the low achievers understand 
fractions better and if low achievers can perform higher order 
thinking tasks as well as high and middle achievers.

Introduction 
While teachers tend to use teacher-led whole class instruction to teach low-achieving 

students and assign traditional drill and practice tasks to them, a number of studies have 
shown that low-achieving students are capable of exhibiting higher-order mathematical 
thinking and in fact benefit from activities incorporating higher-order thinking. For 
instance, Zohar and Dori (2003) analysed four studies and reported that both low-
achieving and high-achieving students made considerable progress with respect to their 
initial scores after they had experienced processes that were designed to foster higher 
order thinking skills. In one of the four studies, the improvement of the low achievers was 
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significantly higher than for high achievers. In another study, Watson (2001) found that 
low-attaining learners were capable of making shifts from process to concept. Using a task 
requiring students to divide identical squares into four equal parts in different ways, she 
discovered that students could shift from seeing fractions as congruent parts to fractions as 
equal areas. There were responses on the task that some teachers might have dismissed as 
incorrect since the learners were known to be low-attaining. However, upon conferencing 
with the learners, Watson found that the students were cognizant of the concept of equal 
parts and they were capable of higher-order thinking. 

The two studies mentioned involved subjects above the elementary level. In our study, 
we were interested to find out if the findings were applicable to students in the elementary 
grades. If so, it would have implications on the kinds of tasks assigned to low-achieving 
students. It might also mean that their work deserved more examining and one-to-one 
conferencing might help teachers determine if the students were grasping the concepts 
taught. 

Research Design and Methodology 

Subjects 
The subjects were 32 Primary 3 students in a mixed ability class. Based on their scores 

in the mid-year examinations, they were classified into three groups: Low Achievers (below 
55 marks), Middle Achievers (between 55 and 85 marks) and High Achievers (above 85 
marks). There were 9 students in the Low Achievers group, 13 students in the Middle 
Achievers group and 10 students in the High Achievers group. 

Procedures 
Three higher-order thinking tasks were assigned to all the students in the study. The 

students worked in their ability groups to solve the problems posed. They were given 15 
minutes to discuss and write down the solution to each task. There were 2 Low Achievers 
(LA) groups, 4 Middle Achievers (MA) groups and 2 High Achievers (HA) groups. At 
the end of each task, 1 LA group, 1 MA group and 1 HA group presented their solutions. 
After the presentations, the teacher guided the students to see how the answers could be 
obtained.  

In defining higher-order thinking tasks, we referred to Bloom’s taxonomy (Bloom 
et al, 1956). This led us to classify any task that required more than recalling of data or 
information (classified by Bloom as knowledge) and understanding and interpretation of 
meaning (classified by Bloom as comprehension) as higher-order. The three higher-order 
thinking tasks that we assigned to students are as follows: 
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1. Your teacher will show you a YouTube video clip (Link: http://www.youtube.
com/watch?v=wL4hICyMLKU, 1:15 to 1:57). In the clip, two cavemen had 
15 bars of gold. The bars were of different sizes (1 whole, 2 halves, 4 quarters 
and 8 eighths). The cavemen wanted to divide the bars of gold equally among 
themselves but as the number of bars was an odd number, they could not 
perform the task. Help the cavemen to distribute the gold bars. 

2.  ? + ? = ½. Find as many pairs of fractions as you can to fulfill the equation.  
3.  Write down as many fractions between ½ and ¾ as possible. 
4. For each of the higher-order thinking task, fraction strips were provided to the 

students. 

Instruments 
The students sat for a pretest before the higher-order thinking tasks were administered. 

They also sat for a post test after the tasks were completed. We were interested to find out if 
involvement in the higher-order thinking tasks was effective in increasing the test scores of 
the students. The pretest and posttest are presented in Appendix 1. 

The group presentations were also graded on the process of arriving at the solutions 
(maximum 2 points) and the accuracy of the solutions (maximum 2 points). 

Key Findings 

Performance on Tasks 
On task 1, all the groups scored zero. The MA group was too shy to present and what 

they wrote on their presentation sheet was not coherent. The HA and LA groups both said 
that since there were 15 gold bars, they should divide 15 by 2 and each caveman should get 
7 ½ gold bars. They did not consider that the bars were of different lengths. 

On task 2, the HA group came up with the least number of solutions, but all were 
correct. They were also the only group to demonstrate understanding of the concept of 
equivalent fractions in this task, with responses such as 2⁄8 + 2⁄8 = 4⁄8 = 2⁄4 = ½. The MA 
group arrived at 7 pairs of fractions, 6 of which were correct. Their last solution was 2⁄7 + 
1⁄5. The sum of 2⁄7 and 1⁄5 is very close to ½. Perhaps in their eagerness to beat the other 
groups, they did not realize that 2⁄7 + 1⁄5 was not exactly equivalent to ½. The LA group 
started off the task well. They were the only group to start off with pairs of fractions with 
different denominators (E.g. 1⁄3  + 1⁄6 , ¼ + 2⁄8  etc.). This was interesting as the HA group 
did not have any pairs of fractions with different denominators and in fact were quite 
satisfied when they obtained their first answer (2⁄8 + 2⁄8). However, the LA group had 
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several incorrect answers (E.g. 1⁄5 + 1⁄10, 1⁄6 + ¼, ½ + ¼ and 1⁄3 + 1⁄9), showing that they 
did not entirely comprehend the addition of fractions.     

On task 3, the MA and HA groups scored the maximum possible score of 4. The HA 
group had 9 correct solutions, while the MA group had 4 correct solutions. Both the MA 
and HA groups demonstrated understanding of how fractions could be compared. The 
MA group drew accurate pictorial representations of how they had used the fraction strips 
to arrive at their answers. The LA group wrote equivalent fractions of ½ as their answers, 
showing that they did not comprehend the task. Their explanation of how they obtained 
their answers was also incoherent (“We use ½ and compare with the rest to get the answer.”).  

Table 1 
Scores on Higher Order Thinking Tasks    

Task 1 Task 2 Task 3

Low Achievers 0 0 0

Middle Achievers 2 3 4

High achievers 0 4 4

Performance on Pretest and Posttest 
Each test had a maximum score of 10 points. Table 2 reflects the average scores of the 

students in each ability group. The LA group had the most significant improvement while 
the high achievers’ average score on the posttest showed a decrease. 

Table 2 
Average Scores on Pretest and Posttest

Low Achievers Middle Achievers High achievers 

Pre test 2.1 3.7 5.6

Post Test 2.8 4.2 5.4

Implications and Recommendations  
Our discussion is focused on the performance of the LA group. The LA group did not 

seem to understand what Task 1 and 3 required. Their answers lacked coherence. When 
we planned the study, our intention was to give the students as little assistance and as few 
hints as possible. We now think that it might benefit the LA students if we gave them more 
guidance, at least in explaining the requirements of the task. 
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Furthermore, writing may not be the easiest and most comfortable method for the LA 
group to explain their solutions. A clinical interview with the LA group after the posttest 
revealed that they were able to complete Task 3 correctly. Students used the fraction strips 
to show fractions between ½ and ¾. They were able to articulate that the strips were longer 
than ½ but shorter than ¾. Noticeably, this did not concur with what was written. Clinical 
interview offers a richer insight to the understanding of mathematics than written tests. 
However, it is time consuming and expensive. 

For task 1, all students did not seem to have understood the task requirements. Students 
were given the whole set of fraction strips (it includes fractions with denominators 2 to 
12). This might have confused the students. On hindsight, we should have given them 
only a whole, 2 halves, 4 quarters and 8 eighths. We probably should also have made the 
instructions clearer and stress the fact that the total length of the gold bars each caveman 
had was to be the same. 

It was also noted that different groups used the given fraction strips differently. For 
example, some groups were able to compare ½ and ¾ visually without removing any fraction 
strips from its holder. However, there were groups who removed the strips from the holder 
and placed the strips side by side to compare the length. 

Another observation was that students’ performance on the pretest and posttest may 
have been affected by the test items in the two tests. Although the items in the posttest 
were similar to those in the pretest, on hindsight, some questions could have been better 
considered. For example, question 2 required the students to identify the smallest fraction 
in a set. In the pretest, the fractions in the set were 1⁄3, 5⁄9 and 2⁄7. The smallest fraction 
was 2⁄7. In the posttest, the fractions in the set were ¼, 4⁄9 and 2⁄7. In this case, the smallest 
fraction was ¼. Many students wrote 2⁄7, presumably because they recalled the answer 
from the pretest and did not bother to work out the correct answer in the second test. This 
posttest item was also slightly more difficult than the one in the pretest. In the pretest, 5⁄9 
was clearly greater than ½ and they could straightaway compare 1⁄3 and 2⁄7. In the posttest, 
all three fractions were smaller than ½, so the item was cognitively more demanding. 

The LA group impressed us with the greatest improvement in the posttest scores. Had 
the learning outcomes for the LA group been simplified, we would have shortchanged their 
capabilities and potential. This does not imply having a one-size-fits-all curriculum. Instead, 
schools should not underestimate the abilities of the students and differentiated learning 
outcome should be carefully crafted.

For future studies, we could consider using a bigger sample size or investigating 
different topics. 
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Appendix 1

Pre Test
1.  What is the missing number in the box? 

2.  Which one of the fractions below is the smallest?  

3. Write these fractions in order, beginning with the greatest.  

4. Find the value of     .  (Express your answer in the simplest form.)

5. Write down a fraction between  and . Draw a diagram in the space below to 
show that your answer is correct.
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6. Sara and Tricia wanted to share some ribbon equally, but they had difficulty as 
there were 7 pieces of ribbon. Help them distribute the ribbon such that each of 
them has the same length of ribbon. Draw how the ribbon can be distributed in 
the boxes below.  

7. Write the missing numbers in the boxes. 
 

Post test
1. What is the missing number in the box? 

2. Which one of the fractions below is the smallest?  

3. Write these fractions in order, beginning with the greatest.  

4. Find the value of   (Express your answer in the simplest form.)
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5. Write down a fraction between   and  . Draw a diagram in the space below to 

show that your answer is correct.
6. Lisa and Min wanted to share some ribbon equally, but they had difficulty as 

there were 11 pieces of ribbon. Help them distribute the ribbon such that each of 
them has the same length of ribbon. Draw how the ribbon can be distributed in 
the boxes below.  

7. Write the missing numbers in the boxes.  
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A number of schools have introduced some form of mobile 
technology into their classes, either Notebooks or the more recent 

Apple iPads and then they start to find uses for them in the classes. 
The iPads give students access to a number of problem solving 
application. Some are basically open ended applications that can 
be used in class and allow teachers to add another approach to 
their range of teaching techniques. 

iPads in Education

What are iPads?
iPads are basically small personal computers developed 

by Apple computers. As with most Apple products, iPads 
work with Apple approved products only. There are 
fortunately many software Applications called “apps” that can 
be downloaded using the supplied iTunes program with many 
apps being free. They are fortunately quite easy to use and 
students should be able to use them intuitively if they have 
already had some computer access beforehand. They use the 
standard interface that is common to most computers and a 
touch sensitive screen and there are many stylus type pens as 
well. It is well worth the money to buy a protective case, a number of which come with a 
portable keyboard.

The first and most obvious use of these technologies is as a gate to the Internet through 
Wi-Fi access and a program such as Internet Explorer or Safari. This is also one of the main 
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concerns that a school needs to consider when developing an implementation plan so that 
Internet access is appropriate for the class program. Students will often go onto Facebook 
or similar sites when they have the opportunity and they can spend a lot of time online less 
productively than would be desired. There are a number of suggested implementation plans 
on education websites.

Text Books 
The recently published textbooks from most major suppliers come with digital versions, 

either on a disk or via website code redemption, normally as PDF files. These files can be 
easily uploaded to the iPad using the iTunes “add file to library” or “add folder to library”. 
The students then do not need to cart their heavy textbooks around and they will have a 
textbook with them as they will make sure that they have their iPads at all times.  

At recent book publisher presentations, the various major publishers stated that they 
are working to make their material more iPad friendly and some have produced specific 
apps that use the code that comes with theirs texts. It is also handy as a teacher to be able to 
project the textbook questions using interactive whiteboards or data projectors.  However, 
it is worth noting that most of the teacher’s editions come with answers. 

Teacher Utilities
There are a number of applications that are available for teacher usage and the following 

are some that have been tested in classes.

Socrative
“Socrative is a smart student response system that 

empowers teachers to engage their classrooms through a 
series of educational exercises and games via smart phones, 
laptops, and tablets.” (http://www.socrative.com/). This 
is an example of “clicker” technology where students give 
responses to questions, normally multiple choice, that are then collated and displayed 
automatically when connected to a data projector. This is, perhaps surprisingly, very 
engaging for the students as they can present their answers anonymously and the class can 
discuss why some incorrect answers may occur. The discussion of how errors occur can be 
just as beneficial as going through the correct processes.  

This particular software, which is free, is easy to use and does allow a number of 
question types so that you can have the students do the questions and collect their answers 
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automatically – good for the environmentally concerned of us. It does take a short while to 
create and upload the tests but they are then reusable and can be shared easily. 

Other Interesting Educational Apps
There are a number of websites that are available through iPad apps which can be used 

for classes and also for teacher professional development.

Ted.com
Ted.com is a collection of videos covering 

a wide range of topics. The app allows you 
to download and then watch a video at a 
later time. The videos cover talks from leading experts giving very engaging presentations 
including topics as broad as “Why is x the unknown?” 

(http://www.ted.com/talks/lang/en/terry_moore_why_is_x_the_unknown.html) 
and there is a very interesting explanation for this. The talks are likely to be advanced for 
many students although they will also be of interest to teachers. 

Khan Academy
The Khan Academy,  

www.khanacademy.org, is 
an iPad app that allows 
access, with an internet 
connection, to the Khan 
Academy collection of over 
3000 videos that cover a 
massive number of topics. 
These videos can be used by 
students to go over a topic 
or to review the concepts at 
a later time. The videos are 
detailed and free. They are accessible by a search menu or through a graphical interface. 

Dropbox
Dropbox is a web ‘cloud’ application 

that can be installed on iPads or laptops. It 
creates a folder that you can invite selected 
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students to ‘join’ so that they have internet access to this folder and can copy material from 
it. It is useful for ‘dropping’ in sets of notes, old tests, solutions, homework materials and it 
saves a lot of paper as well as photocopy costs. You could drop in a test at the start of a lesson 
and set it as read only and later add the solutions as well.

Finding Apps for iPads
There are a number of iPad apps available, literally thousands, many of which are 

free. There are a number of websites that make recommendations relating to educational 
apps although a simple Google search, such as “educational iPad apps mathematics” will 
find plenty of examples and they will normally connect straight to iTunes and can be 
downloaded to the iPad directly. Some starting places for mathematics apps are;

http://appsineducation.blogspot.com.au/p/maths-ipad-apps.html
http://www.mathsinsider.com/16-cool-ipad-math-apps-that-your-child-might-

actually-love/
http://mathxtc.com/MacMaths/iPadMaths/iPadMaths.html

Using the iPad Camera
Students often use the camera to record whiteboard notes, either so they don’t have 

to write them down or to pass on to friends. There are also some apps that will record your 
screen so that you can keep a video copy of any notes you might use when it is used as a data 
projector. The screen resolution and stylus pen accuracy are not particularly accurate at the 
moment so it can be difficult to use unless you have good writing skills.

Student Apps
There are thousands of apps available for, some for students, some for mathematics and 

some are free. Although the cost of most apps is quite low, often $0.99, they can build up. 
Most apps are described well in their iTunes pages although a few that are ‘free’ are only free 
for the beginning level and more levels or chapters can be expensive. On rare occasions some 
of the apps are not as described and one that showed various steps of calculus operations 
was actually doing the calculations incorrectly. It is best to search for apps related to a topic 
such as ‘probability’ and see what is available. The following apps are some examples related 
to specific topics and some problem solving examples.
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Minds of Mathematics 
This is an extensive timeline covering the major discoveries in mathematics with 

articles and detailed commentaries. However, the app is large and should be downloaded 
on a fast connection.

Ooops
This is a simple app that 

asks the students to add 
brackets at the correct location 
to make some equations true.  
(http://itunes.apple.com/us/
app/ooops/id467564672?mt=8&affId=1449142) It seems very simple at the start but 
does become quite complex as it gets to the higher levels.  

Learning Programs
There are a number of apps that will solve quadratic equations like Factor. There are 

games like Bubbles that require students to use their skills with the four operations in order 
to complete various levels. The old 15 Slider puzzle is also available free.  

Puzzles for Students 
The available apps include a number of Tangram based puzzles. Other free pattern 

puzzles are MindPuzzle and Water Pipes. Apart from a number of actual Sudoku 
problems there are also variations including KenKen which is an extension to Sudoku with 
mathematical questions – very addictive! Other examples include the 8 Queens problem, 
the Knight’s Tour, mazes, chess games, code puzzles and dice based games such as Yahtzee.

Now go to Apple.com, download iTunes and start exploring!
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HOW CAN WE USE GOOGLE EARTH 
IN MATHEMATICS CLASS 

Dennis Fitzgerald

Siena College - Deakin University

Google Earth is a free program that most students and teachers 
are familiar with although most only use it to view their own 
house. Google Earth has measurement capabilities and works 
in a number of measurement units as well as longitude and 
latitude. With the use of GPS devices students can develop a 
better understanding of shapes and scale.

Google Earth
Google Earth allows users to view the Earth using overlays of satellite photos at various 

scales with a high level of resolution for capital cities and major cities. The program can be 
used from the internet with a less detailed version from www.google.com.au although it 
is best to download the standalone version that will work on laptops and an iPad version 
is also available. It does require a reasonable speed internet access so that maps can be 
refreshed quickly.

Mathematical Use of Google Earth: Some Starting Questions
The main tools that mathematics students can use are scale, area and length. From 

these a number of projects have been developed. Some possible uses are described below. 
There are a number of questions in the following sections that could be generalised for any 
location including a local area that is familiar to the students.
Longitude and Latitude

A good starting point is to look at the concept of longitude and latitude by finding 
values for specific locations. Students can also find specific latitudes such as Melbourne’s, 
38 South and step around the world in 10° degree intervals and explore the world. They 
could estimate how many of the points are over oceans and examine their range of errors 
and repeat this at 30° and 50° south. 
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Area and Estimation in Sports
By measuring the area of a region such as a park and making an estimate of the area a 

person might need, such as 1m2 each the students could work out how many people the 
park could hold and then compare it with official values. When the official seating value is 
used the actual area per person can be worked out and compared with other values around 
the world. As part of this the students would work out the area of the Annulus formed by 
the seating areas surrounding the playing fields.  

What is the Playing Area?
Students can investigate answers to questions such as these. Is the MGC the biggest 

football oval? Do soccer ovals around the world vary in size or surroundings? How much 
of a sporting venue is a car park, how much is playing grounds and how much is unused? 

How Far is the Run?
How far could a marathon take you if the runners started at the MGC and ran in as 

straight a line as possible? What would be the area covered if they had to ‘run around’ the 
bay?

Moving Location
If you found the footy game was at Docklands rather than the MGC how far do you 

have to travel? What is the actual shortest distance that you would have to travel through 
the various streets to it?

Perimeter
How far around the various ovals is it? If a running track is set up for a 400m race, what 

percentage of the oval will be used?

Land Usage
Select several suburbs and a 1km square. Is there a significant difference in the amount 

of park land, swimming pools, shopping centres or average house block size? Does analysing 
these values support your judgement of the suburb? 

Airplane Landing Strips Around the Country
Who has the longest strips, the greatest total strips, the most strips per overall area, is 

the strip length related to the car parking area?

Volume
Try to determine the volume of a building by working out its base area and then making 

an estimation of its height. 



How Can We Use Google Earth in Mathematics Class

174

What volume of material is stored on the local docks? Find out the volume of a 
standard container and estimate the number of containers.

Shapes
Locate and determine the perimeter and area of as many different shapes as you can 

find around the city.

Estimation
Pick a specific item such as cars and estimate the number in a specific location. Zoom 

in on the object and make a more accurate count.

Data Handling Activities 
There are a number of ways of collecting data from different locations that can then be 

analysed and graphed.

Car Park Count
Count the number of different coloured cars in a shopping centre. Draw a pictogram or 

bar chart to show your results. How many spare parks are there, in number and percentage?

How Many Can Play?
Select a particular sport such as tennis for a specific suburb and count the courts and 

multiply by the number of possible players and determine which sports might be the most 
popular in the area. Present several sports in table and then on a graph.

Food Production
Examine a number of regions and look for quantities of food being grown, number of 

orange trees, area of vines, areas of wheat production. 

Student Estimation of Distance
Have the students pace out a specific distance at school, such as from one end of the 

school property to the other and check their estimates with Google Earth maps. If you 
have an iPad with Google Earth loaded then this can be done on site immediately. Does 
repeating this activity improve their accuracy?

Scale
A scale and height is given on the Google Earth screen. Have the students examine the 

connection between the height and the scale.
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GETTING RID OF THE TExTBOOK: 
THEORETICAL BASIS AND 
PRACTICAL ExPERIENCE

Hayley Paproth

Warrnambool College

Lachlan Yeates

Warracknabeal Secondary College

Textbooks continue to be a very common part of many Australian Mathematics 
classrooms. This is despite a significant amount of research showing that they are not 
aligned with current understandings of effective mathematics teaching. This paper reviews 
this literature and describes the experiences of two teachers who have transitioned away 
from a reliance on textbooks in their classrooms.

Introduction
Far more than in other subjects, textbooks are ubiquitous in the Mathematics classroom. 

Research has shown that textbooks continue to significantly influence mathematics classes 
in Australia and overseas (Pehkonen, 2004; Vincent & Stacey, 2008). There are a number of 
reasons that schools and teachers may choose to phase out the use of Mathematics textbooks. 
Foremost amongst these is the growth of one-to-one ICT programs as well as the view of 
the textbook as a symbol of the traditional, lecture and drill style of teaching mathematics. 
This paper will look at the roles traditionally played by mathematics textbooks and the 
experiences of two mathematics teachers moving away from a reliance on the textbook.

Roles Filled by Textbooks
Textbooks play a role in the majority of Australian mathematics classrooms. In the 

1999 TIMMS study students used textbooks or worksheets in 91% of the lessons observed 
(Hiebert, et al, 2003). In the 2002/03 TIMMS study about half of the Year 8 teachers 
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used a textbook as the primary basis for their lesson, with only 5% of classes not having a 
textbook at all (Thomson & Fleming, 2004). 

There have been sustained efforts from professional bodies and researchers for over 
30 years to transform mathematics education from the closed, skill and drill, chalk and 
talk models to the so-called “reform style” with a focus on conceptual thinking and 
problem solving (Cockcroft, 1982; NCTM, 2000). However, little progress seems to have 
been made, with the focus still often resting on fluency or basic rote learning. A possible 
explanation for the lack of movement towards the new style of mathematics education is 
the perception that many teachers have of the importance of a textbook, with it filling many 
roles, including:

•	  ensuring they deliver the specified curriculum  
(Haggerty & Pepin, 2002; Reys, et. al., 2003)

•	  assistance in planning and structuring their curriculum  
(Schmidt, et. al., 2001), 

•	  a guide for pacing and ordering of material within a topic  
(Freeman & Porter, 1989)

•	  a source of worked examples and exercises of increasing difficulty 
(Love & Pimm, 1996).

As many teachers use textbooks to organise lessons and structure their courses, they 
can dominate what students learn (Apple, 1992). Some teachers supplement their textbook 
with other materials and alternative activities; however there are still many who do not 
(Vincent & Stacey, 2008). Further, textbooks usually approach learning mathematics with 
a ‘one-size-fits-all’ approach, which can be detrimental to the learning of the majority of 
students (Siemon, et. al., 2001).

Textbooks offer stability, and are logical and explicit about what is to be taught. 
When teachers feel overloaded by the demands of teaching, both inside and outside 
of the classroom, it can be easy to view the textbook as a planning tool, meaning fewer 
choices to make, with a built in schedule to keep to (Pehkonen, 2004). Many teachers feel 
passive and mechanistic in their teaching when they use a textbook; however they can feel 
uncomfortable when choosing to skip over sections, change the order or do only some of 
the questions. Therefore curriculum materials such as textbooks can be very influential in 
individual teachers work and can have vast reach within the system (Ball & Cohen, 1996). 
This can be positive, such as influencing a common curriculum across diverse settings; 
however it can constrain teaching and limit the opportunities for student learning. 
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Textbooks, as they are currently used in many Australian mathematics classrooms, are 
the embodiment of “closed mathematics”. Many textbooks organise material into discrete 
chapters which minimise links between different mathematical concepts. Research suggests 
that forming links is vital to students retaining concepts and skills beyond the topic test 
(Stein & Lane, 1996; Vincent & Stacey, 2008). Increasing the intervals between practice 
sets, from days to weeks or months, has been shown to increase long term retention of 
mathematical skills (Rohrer & Pashler, 2007), however textbooks encourage a focus on 
only one skill and concept at a time, very rarely returning to previous skills for later practice.

Mathematics education should encompass all of the different levels of Bloom’s taxonomy 
(Krathwohl, 2002), from the ability to recall and apply basic formulas to the ability to 
generalise, prove and find solutions to novel problems (Schoenfeld, 2004). In contrast, 
textbooks traditionally only contain problems of low procedural complexity and do not 
require students to make connections (Vincent & Stacey, 2008). Therefore textbooks focus 
mainly on fluency, only one of the four proficiency strands in the Australian Curriculum, 
the others being understanding, reasoning and problem solving (ACARA, 2009). Further, 
textbooks are built around individual practice, ignoring the benefits derived from and skills 
gained during group work. 

Experiences in “Getting Rid of the Textbook”
The authors currently teach at two different Colleges in regional and rural Victoria. 

Warracknabeal Secondary College is a small rural school of 250 students. In 2012 the 
school introduced a 1-to-1 iPad program at Years 7 and 8 and students were not required to 
buy a Mathematics textbook. Teachers were given the option to use a pdf textbook, but the 
author elected not to. Warrnambool College is a school of approximately 1000 students. 
An optional laptop/netbook program ran for 10 years, and in 2012 the school switched to 
a full one-to-one netbook program, starting at Year 7, with students no longer purchasing 
textbooks for the majority of their subjects. 

When transitioning away from the use of textbooks, the authors focused on replacing 
the meaningful roles previously filled by the textbook, as well as implementing a range 
of open-ended, problem solving and hands-on tasks. The first of the roles filled by the 
textbook, a source of progressive practice problems, is the most easily solved. The table 
below presents a number of different ICT based options available. 
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Table 1.
Alternate Sources of Practice Problems

Name Positives Negatives

Khan Academy Mastery based
Hints and videos to 
support students
Great data for teachers 
and students
Encourages spacing
Gamified (points and 
badges)
Works on iPads
Free

Closed questions
Discrete topics
Inconsistent difficulty 
levels
Aligned to an American 
curriculum

Maths Online Aligned to Australian 
Curriculum
Instructional videos 
available

Not engaging
Medium cost

Manga High Game based/ engaging
Scaffolded question sets
Hints and worked 
examples available
Some data available for 
teachers
Ability to set challenges
Linked to VELS

High cost
Time restrictions on 
questions
No iPad support

Mathletics Linked to VELS
Used in many primary 
schools

Medium cost
No iPad support
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Name Positives Negatives

Sumdog Game based – can play 
against class mates
Can set targeted practice 
areas for individual 
students
Free for basic version

Focuses on number skills 
only
Medium cost for version 
with teacher data

hatquiz.org Addresses most 
curriculum areas
Ability to increase and 
decrease difficulty
Free

No in-built progression
No help available to 
students
Visually unappealing

Excel Worksheets Conditional formatting 
allows for instant feedback
Students work at their 
own pace

Time consuming to create
Requires advanced 
knowledge of Excel

Worksheet Generator Installed on DEECD 
computers
Easy to use

Not engaging
Non-adaptive

iPad apps Engaging
Interactive
Varied

Cost and distribution 
issues
Few targeted to secondary 
Mathematics

Another dominant role of textbooks is as a curriculum checklist. There are a number of 
alternative sources of curriculum documentation and planning assistance. The Mathematics 
Association of Victoria has an online resource providing lesson and unit plans, ideas and 
activities available to members. There are published sources such as Maths in the Inclusive 
Classroom, two books composed of a series of units aligned to the Australian Curriculum 
for lower secondary students. These units are organised around a series of practical, themed 
activities aimed to assist in implementing “just-in-time” teaching (Reilly & Parsons, 2011). 
Maths300 has a searchable database of investigations and lesson plans accessed via an annual 
school subscription. The VCAA has published a planning document allowing teachers to 
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cross-check their current curriculum with the Australian Curriculum. The Mathematics 
Planning Templates can be downloaded from the VCAA website (VCAA, 2012).

Over the year the authors have trialed a range of planning strategies and teaching 
methods. Although there have been many positives, there has been a tendency to over-rely 
on resources such as Khan Academy just as it is easy to over-rely on the textbook. A reason 
for this was the excessive time required to create engaging, integrated unit plans from 
scratch. Collaborative planning, the use of external resources, experience and the creation 
of a bank of materials will alleviate this in the future. Resources such as Khan Academy have 
significant advantages over textbooks in their ability to cater for diverse student needs, the 
plethora of tracking data provided to the teacher and the instructional videos and assistance 
available to students. However, they are still a closed form of Mathematics learning and 
have little emphasis on problem solving and reasoning, as well as a lack of context. 

Conclusion
Textbooks currently dominate the Australian mathematics education landscape; 

however research suggests that an over-reliance on textbooks can have severe consequences 
on student learning. There are many alternatives which can be used to replace the positive 
roles currently filled by textbooks, as well as a wealth of resources and assistance to create a 
more open, investigative classroom. The authors have shown that it is possible to phase out 
textbooks, even for inexperienced teachers. Although there have been some challenges, it 
is a vital undertaking which is necessary to improve the standards of teaching and learning 
in Mathematics.
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When trying to investigate how to improve students’ ability 
to transform shapes, I came across the teacher-held view that 
visualisation couldn’t be taught. This paper presents a review 
of research which suggests that logical deduction is crucial to 
performing complex visualisation tasks. This process, which 
uses minimal amounts of visual thinking, can be supported by 
teaching students to recognise geometric properties and their 
interconnections.

Overview
Like many Victorian schools, my school dedicates some time to analysing NAPLAN 

data to look for areas in which we could improve our teaching. When looking across all 
of our mathematics data since NAPLAN began, my school discovered that not all of our 
students did well in shape-related questions. In particular, if a question required mentally 
moving shapes – transformations – the rate of correct responses fell. 

Being the leader of the school’s Numeracy Improvement Team, I decided to investigate. 
This paper summarises the information I found in the research literature. I use this 
information to argue against a view that was prevalent among the teachers that I work with 
– the view that mentally moving a shape had to be performed by visualising the whole 
movement. 

In the research literature, transformation of shapes falls into the category of spatial 
visualisation. It’s difficult to address any topic connected to geometry without reference to 
Van Hiele research. Section 2 looks at two modified versions of Van Hiele models and how 
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visualisation fits within the most influential theory used to organise geometry learning. 
Section 3 examines the differences between Van Hiele theory (which guides research 
debate) and curricula (which guide teachers).

When visualising shapes transformed, we use several interrelated processes. If not all of 
the shape to be transformed is visible, then the first step of visualisation is to create the object 
to be visualised (Gutierrez, 1992). Then, a process that enables us to make the imaginary 
movement must be applied. Section 4 examines relevant research on the psychological 
processes of visualisation. This research is about how the object of visualisation is made, the 
processes of visualisation and the connection between the two.

Van Hiele Research
The Van Hiele Levels are the most influential categorisation of the development of 

geometric thinking in children. This is not to say that they have not attracted criticism 
– they seem too hierarchical and too generalised– but they are still seen as very useful by 
the researchers who make these criticisms (Battista, 2007). Most critics amend, rather 
than reject the levels outright. Rather than examining all of the amended versions of the 
levels, we are going to look at just 2 modified versions: Gutierrez’s 1992 version, which 
applies the levels specifically to spatial visualisation and Battista’s 2007 version, which adds 
sub-categories to the levels (both models – which will be discussed in more detail – are 
presented in Table 1).

While Pierre Van Hiele and Dina Van Hiele-Geldof originally developed the levels to 
catagorise children’s thinking in the development of 2D shape, Gutierrez has attempted to 
reapply them to spatial visualisation using 3D solids. Battista’s (2007) version provides an 
updated model which applies to geometric thinking in general with subgroups in each level 
to make the levels less coarse. 

While Battista’s general model of the Van Hiele levels is based on a large body of research 
and only differs from the original model in terms of its subgroupings, Gutierrez’s model 
– which has been tested on the analysis of three students’ thinking in a few visualisation 
tasks – is highly theoretical and is the only model to focus specifically on visualisation. As 
such, Gutierrez’s work may be a useful categorisation but it must be remembered that more 
research is required to determine whether it is an accurate depiction of the development of 
visualisation.
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Table 1
Two Amended Versions of the Van Hiele Levels

Level
Spatial Visualisation Version of Van 

Hiele Levels (Gutierrez, 1992).
General Version of Van Hiele Levels 

(Battista, 2007).
1 Recognition: children can only 

recognise what they can see. They’re 
unable to visualise unseen parts of the 
shape or movements.  They use trial 
and error to manipulate solids to new 
positions.

Visual-Holistic Reasoning: students 
use visual wholes when working with 
shapes. Orientation has a big effect 
on recognition. (2 subgroups: pre-
recognition and recognition)

2 Analysis: children use global 
perception and properties of solids 
(mainly based on observing the 
solid in question). They can visualise 
simple movements between concrete 
positions.  The movement is made 
based on examining the beginning 
and end position (but not guessed at, 
like level 1).

Analytic-Componential Reasoning: 
students can analyse parts of shapes 
and their relationships. There 
are three subgroups based on the 
increasing geometric formality of 
children’s understandings.

3 Informal Deduction: children 
perform mathematical analysis 
prior to movement. Some informal 
justification can be given post 
movement. They can visualise 
movements to unseen positions.

Relational-Inferential Property-Based 
Reasoning: students can now see 
how properties are related and how 
some properties are dependent on 
others. There are 4 subgroups based 
on the logical sophistication of the 
relationships made.

4 Formal Deduction: students 
analyse properties of the object 
prior to movement and are aware of 
properties which are not visible (but 
known through formal definitions). 
They use pre-planned movements 
based on mathematical knowledge 
which are accurate and economical.

Formal Deductive Proof: students 
can construct formal axiomatic 
proofs.
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Van Hiele research’s main contribution to understanding students’ geometric thinking 
in a primary setting is the progression it describes from being able to think about only 
seen whole objects (level 1) to some knowledge of a shape’s properties (level 2) to making 
connections between known properties (which provides information for unknown 
properties of the object – level 3). Whether neuroscience has any relevant evidence on the 
feasibility of this progression will be discussed in section 4.

Van Hiele Theory and VELS – Different Foci
The influence of Van Hiele levels on the shape section of DEECD’s Mathematical 

Developmental Continuum P-10 (Stacey et al., 2006) is immediately apparent. The bulk 
of primary geometry topics involve moving students from global, visual-holistic (Van 
Hiele 1) reasoning towards localised, analytical-componential (Van Hiele 2) thinking. Van 
Hiele theory is less apparent in the learning statements and VELS primary-level standards 
themselves. This is because VELS standards assess what students can do, not how they do 
it. Van Hiele theory is more concerned with how students think about geometry. Students 
with exceptional global perception may be able to ‘pass’ middle-years levels in VELS while 
operating in Van Hiele level 1.

The difference between VELS’s focus on what children can do as opposed to how they 
do it highlights an interesting split between the literature and the curriculum around skills 
such as visualisation. At the practitioner level, this difference is crucial – a classroom which 
focuses on measuring what students can do (i.e. the level of complexity of the visualisation 
tasks they can perform) is markedly different to a classroom which measures how students 
do it (i.e. the complexity of the strategies used to complete the task). Of course, these two 
approaches are interconnected; proficiency in complex strategies should lead to being able 
to complete more complex tasks.

I claim that this causes problems for the teaching of visualisation in that many teachers 
feel that teaching students to develop Gutierrez’s level 2 is somehow cheating – that you’re 
only truly able to visualise if you can manipulate the whole object. Decomposing a shape 
and focusing on parts is some kind of work-around that is not visualisation. The ability to 
manipulate the whole shape is then, as one colleague put it, “something you either have 
or you don’t; it can’t be taught”. While claims that these kinds of attitudes are widespread 
can only be based on anecdotal discussions with colleagues (due to a lack of research), 
the position that spatial visualisation cannot be taught has, at times, been the prevalent 
view (Ben-Haim, Lappan, & Houang, 1985). Ben-Haim et al. challenged the view that 
visualisation cannot be taught by making significant improvements to students’ ability to 



Dan Jazby

187

visualise shapes (3D shapes from 2D representations with no movements – creating an 
object of visualisation with no other processes applied). 

Moving from visual-holistic reasoning to analytic-componential reasoning as a means 
to develop visualisation can be justified by the research. In Gutierrez’s (1992) examples, 
students at higher Van Hiele levels are able to use more technical language to identify 
properties of a solid which will enable them to visualise the objects transformed (e.g. 
Carmen, the highest performing student in the study, uses terms such as lateral, degrees, 
face, edge and perpendicular in contrast to other students’ informal language). Similarly, 
when Battista (1990) tested high school students for gender difference in geometry and 
analysed which strategies students used (such as visual, analytical or non-spatial strategies), 
he found that students who did well tended to use more analytical strategies and rely on 
visualisation less. They knew a plane intersecting 3 points of a 3D shape was going to be a 
triangle because it intersected three points (their analytical knowledge) and didn’t draw or 
visualise what it looked like. These examples help demonstrate the interconnectedness and 
dependence of spatial visualisation on general geometric ability and logical deduction. It 
would be uncommon for children to be able to operate at Gutierrez’s Van Hiele level 2 in 
spatial reasoning without also being able to operate at level 2 in Battista’s more general model 
(i.e. to be able to perform imaginary moves on objects with some localisation without being 
able to recognise localised properties to begin with). Thus, in order to develop visualisation, 
recognition and categorisation of the properties of shapes is essential. 

The Psychology of Van Hiele Theory and Visualisation
Studies (some by Kosslyn, others by Posner and Raichle) are citied by Battista (2007) 

to explain some of the psychology of shape recognition. The brain sees shapes globally first, 
then it can see them locally. Brain damage in one part of the brain can produce problems 
with global perception, while damage in another area produces problems with local 
perception. This provides a neurological explanation for “global/local processing separation 
(being) built into the architecture of the brain” (Battista, 2007). Through learning and 
development, these separate processes become integrated. As adults, we can engage in both 
processes without really thinking about it, but children need to develop this integration. At 
Gutierrez’s level 1, children are using global processing only. The progression to higher levels 
can be seen as the development of local processing and the development of the integration 
of these two mental processes.

Kosslyn, Posner and Raichle’s views on the architecture of the brain raise several 
questions for educators. Three of these need to be answered before visualisation can be 
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taught: if global/local thinking is used to visualise objects and movements, and it improves 
partly through education and partly through brain development, then: 

1. To what extent can it be influenced by intervention (i.e. to what extent can 
visualisation be taught)? 

2.  When should educators intervene to maximise development (i.e. when has the 
brain suitably developed to be ready for intervention)? And,

3.  What kind of intervention works? I shall provide some evidence to answer the 
first two questions.

The existence of successful interventions in the teaching of visualisation (such as 
Ben-Haim et al., 1985) implies that it can be influenced by teaching. The extent of that 
influence is open to debate and requires further research. Kosslyn (1994) argues that, in 
order to effectively integrate global/local perception, most people will require instruction. 
This challenges the view put forward by my teacher colleagues; it seems that not only does 
visualisation require teaching, it requires students to learn how to use strategies that don’t 
seem like visualisation. In the Battista (1990) study mentioned in section 3, two classes were 
used. Teacher 2 stressed visualisation in her teaching and, subsequently, her female students 
didn’t perform as well in Battista’s test as Teacher 1’s female students. Battista (2007) uses 
Kosslyn to claim that children may begin thinking in images but eventually recode images 
into propositional format or words (Kosslyn himself situates this claim within a long-
standing debate within psychology, which may be more problematic than its use by Battista 
implies). This means that, while I may have to visualise a triangle when first developing 
the concept, eventually, I can think of a triangle as a collection of related propositions 
without the image. This mental model can be retrieved as a word with little cognitive load. 
Processes of visualisation (which may have also been recoded into propositional format) 
can then be applied more efficiently without the cognitive load of visualising the object 
to be transformed. Teacher 2, by insisting that students visualise the object may have been 
forcing students to use Van Hiele level 1 and 2 thinking, when formal deduction would have 
worked better. This does create a counter-intuitive situation where performing complex 
visualisation tasks may require a cognitive process with very little visualising.

In the context of mathematics classes, the preferred propositional format used to codify 
shapes will be part of the discourse of geometry. That is to say, as educators conversant 
in Van Hiele theory, we would hope primary-aged children’s mental model of a triangle 
is moving from ‘a pointy shape’ to a shape with three sides and three corners. Given the 
custom of using geometric objects to teach visualisation, the most effective teaching 
of spatial visualisation will work within the discourse of geometry. This makes effective 



Dan Jazby

189

geometry learning a prerequisite of learning how to visualise via a logical, deductive process. 
By helping students learn to recognise near-geometric features in real objects, we can enable 
them to apply these skills to situations outside of the classroom.

As for when to teach visualisation in a primary setting, Mistretta (2000) aligns Van 
Hiele level 3 with American junior high school. Thus, primary school geometry can be 
aligned with movement from visual-holistic (level 1) to analytic-componential (level 2) 
reasoning. Research into perceptual and imagistic reproduction provides a three-level 
development of children’s thinking which has parallels to spatial visualisation (Clements 
& Sarama, 2007). When reproducing images, children move from encoding (reproducing 
what is visible) to reproduction requiring memory to transformation requiring rotation or 
perspective taking. Rosser, Lane and Mazzeo (as cited by Clements & Sarama 2007) found 
that pre-primary aged children encode and reproduce from memory, suggesting that the 
brain development prerequisite to being able to transform shapes has occurred by the time 
children reach primary school.

Perham (as cited by Clements & Sarama 2007) found that students had the least 
difficulty performing slides, then flips and then finally rotations on shapes. This can be 
affected by the direction of the flip or rotation (i.e. a 90° rotation can be easier than a 
30° flip). Despite rotations being the hardest transformation to perform, Rosser, Ensing, 
Gilder and Lane (as cited by Clements & Sarama, 2007) found that 4-5 year olds could 
perform simple rotations of simple shapes with support. 4-8 year olds got dramatically 
better at performing rotations. It could be the case that children at this age are performing 
transformations using only recognition of the object globally (Guteirrez’s level 1) but, 
perhaps, this increase in ability is due to an increased ability to think locally (about the 
parts of objects), which would suggest that the neurological development of global/local 
cognition is not a hindrance to intervention by this point.

Conclusions – Spatial Visualisation can be Taught
Perhaps my colleagues were correct: the ability to mentally manipulate a whole, complex 

shape is something you either have or you don’t. The point is that mentally manipulating a 
whole shape is not the only way to successfully perform spatial visualisation tasks.

Logical deduction provides a way of performing transformations that requires minimal 
visualisation. This involves:

1.  breaking a shape down into parts;
2.  performing a transformation on a small part; 
3.  working out how this change impacts logically on the other parts of the shape; and 
4.  checking the final result. Without a solid basis in geometry, students are unlikely 
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to be able to confidently move from step 2 to 3 in this process.
Visual thinking still has an important place in visualisation – particularly when 

operating in the lower Van Hiele levels – but, as visualisation tasks get more complex, 
logical certainties known from geometry may become more useful than picturing shapes 
in your head.

My claim is that many teachers, guided by curriculum standards, rather than the 
research literature, find this counter-intuitive. They think they have to teach students how 
to perform visualisation tasks using visual thinking processes, thus they fail in progressing 
student thinking towards deductive methods. They underestimate the importance of 
analytical and logical reasoning in visualisation. Evidence to support this claim is limited, 
however, while there are many studies (like Clements & Samara 2011) which examine 
teachers under-preparedness to teach geometry in general, there are none which look at 
this counter-intuitive aspect of visualisation. (Battista, 1990; Clements & Sarama, 2011; 
Kosslyn, 1994)
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When games are used in mathematics classes as a tool to 
mediate learning, students are able to build new mathematical 
knowledge, skills and understanding in a context where they feel 
comfortable, motivated and engaged. Many students would find 
it ideal to have their mathematics classes to be fun and interesting, 
including playing games, and the games do not even have to be 
overly complicated in order to help build number sense and a 
student’s self-concept (confidence and beliefs about mathematics). 
Games can build visualisation, creativity, and problem-solving 
skills, and when used collaboratively, can also foster cognitive and 
metacognitive development, as long as the game does not distract 
from the goal to learn new mathematics concepts or lose its novelty 
value. In this paper, suggestions are given to use and modify the 
game of Battleship to introduce concepts from Directed Numbers, 
and give students a free platform to develop and consolidate their 
own understandings of Linear Functions and Graphs, such as 
generating rules from straight line graphs, and simulating the 
transformations of rotation and translation by manipulating the 
gradient and y intercept. Suggestions for further expansion of the 
game are also given.

Rationale for Games in Mathematics Classes
Mathematics is considered important by most, but on the whole, it is not a popular 

subject, nor is it considered an easy subject to teach or learn. It was stated by the Review 
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Panel of the National Numeracy Review Report (Commonwealth of Australia, 2008) that 
“many Australian students are not learning the basics of mathematics, nor are they being 
equipped for further study or future employment”. Recently, this issue has been addressed 
by the Australian Curriculum, Assessment and Reporting Authority (ACARA) in the 
creation of the Australian Curriculum: Mathematics, which aims to ensure that students:

•	  are confident, creative users and communicators of mathematics, able to 
investigate, represent and interpret situations in their personal and work lives and 
as active citizens,

•	  develop an increasingly sophisticated understanding of mathematical concepts 
and fluency with processes, and are able to pose and solve problems and reason in 
Number and Algebra, Measurement and Geometry, and Statistics and Probability, 
and

•	  recognise connections between the areas of mathematics and other disciplines 
and appreciate mathematics as an accessible and enjoyable discipline to study. 
(ACARA, 2012, p. 3)

It is only through research that the best methods can be found and employed to fulfill 
these aims.

The Australian Mathematics Curriculum is organised around three content strands 
(Number and Algebra, Measurement and Geometry, and Statistics and Probability) 
and four proficiency strands. A student is considered proficient when they can show: 
Understanding – where students can interpret mathematical information, describe 
their thinking, make connections between mathematical concepts and are able to adapt 
and transfer them to unfamiliar situations; Fluency – where students can readily recall 
definitions, factual knowledge and concepts, use correct mathematical language, can 
calculate answers and approximations efficiently, and can choose appropriate procedures 
to find solutions to problems; Problem Solving – where students conduct investigations in 
unfamiliar situations, and model, make choices, interpret, and formulate to seek solutions, 
and check validity of solutions; and Reasoning, where students explain their thinking, 
deduce and justify strategies used and conclusions reached, and can prove truth or falsity 
of statements.

As a mathematics teacher and tutor, the author is particularly interested in finding 
ways to improve students’ mathematical proficiency, and it has been found that engagement 
is a significant factor in student achievement. Goos, Stillman and Vale (2007) state that 

Students’ beliefs about themselves as doers of mathematics, and about particular 
topics, the nature of mathematics in general, and the mathematics classroom environment 
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contribute to their metacognitive awareness and influence their metacognitive regulation. 
Self-beliefs also reinforce affects, in particular, attitudinal traits such as motivation, 
confidence and willingness to take risks. (p. 37 - 38) 

It has been suggested that games can be used to improve student motivation and 
engagement, and give an open-ended platform to explore, build problem solving skills 
(Amory, 2010), and discover new areas of mathematics (Clarke & Roche, 2010). Therefore, 
it is possible that if utilised effectively, games could be used in mathematics classes to help 
students gain the proficiencies stated above and to help achieve the aims of the Australian 
Mathematics Curriculum. The word “game” has broad usage in the educational literature, 
and has been used to describe, among other things, environments that simulate real-world 
situations (Edo, Planas & Badillo, 2009), the linking of problems, puzzles and challenges 
in a virtual environment (Amory, 2010) and may include the use of Information and 
Communication Technologies or other media (Main & O’Rourke, 2011). For the purposes 
of this project, the word “game” will be used to represent any situation where learning 
occurs through a context of play.

It has been found by Clarke and Roche (2010) that by having their students play a 
game, key teaching points could be identified by addressing misconceptions that can be 
found through observation of the students as they play. The game involved having students 
in pairs rolling dice to give the numerator and denominator of a fraction, and trying to 
colour in that fraction on a fraction wall. It was found that the students could discover, and 
grow to understand, many fraction concepts for themselves, such as equivalent fractions, 
improper fractions and addition of fractions. Students also needed to build visualisation 
skills (since it is quite a visual challenge to see what combinations of fractions could give 
what has been rolled), and problem-solving skills from weighing up all possibilities before 
choosing what combination of fractions is to be coloured. This article highlighted how 
through playing a game, students generated curiosity and are able to discover mathematical 
concepts or build mathematical skills for themselves.

The author would argue that mathematics is the use of numeracy, logical arguments 
and structured order to make connections and solve problems in unfamiliar situations. 
Goos, Stillman and Vale (2007) state that in mathematics classes, students need to be given 
opportunities to appreciate the connection between mathematical ideas and to understand 
the mathematics behind the problems they are working on in order to gain mathematical 
proficiency. They believe that an ‘inquiry mathematics’ approach to learning mathematics 
can generate higher levels of understanding, and to build metacognitive skills. Games can 
be used to create this environment of inquiry. Games need to be complex enough to foster 
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cognitive development, visualisation, experimentation and creativity. Amory (2010) makes 
the argument that there is little change in student performance when the game is merely 
used as a tutor or transmitter of information, i.e. when the game takes what Amory calls 
a “learning from” approach, but that knowledge is easily constructed when the game is 
used as a tool to mediate learning, i.e. when the game takes what Amory calls a “learning 
with” approach. A collaborative design supports learning, because the discussion of ideas 
encourages metacognitive strategies such as thinking aloud, recording and modelling, 
which in turn influence problem-solving abilities.

If you were to ask a group of students their opinions about mathematics, it’s likely that 
the general consensus would be that mathematics is necessary, but complex and unpleasant 
(Goos, Stillman & Vale, 2007). In research undertaken by Sullivan, Clarke and O’Shae 
(2010), in which they had students in Years 5 to 8 describe their ideal mathematics lesson, 
responses were sorted into categories, and the one that had the most responses, with 45% 
of the 930 responses, was the “fun/interesting” category. Of these, 37% included the use of 
games. In addition, many students stated that they liked to work in groups and they liked 
to be challenged, which are important components in games according to Amory (2010) 
as stated above.

Main and O’Rourke (2011) conducted research to determine whether students’ 
number skills would improve and whether their self-concept (i.e. their beliefs and 
confidence in mathematics) would improve from playing Dr Kawashima’s Brain Training 
on the Nintendo DS on a regular basis. Essentially this game is skill and drill, but presented 
in a format that the students find familiar. The researchers observed and recorded the level 
of engagement and the type of interactions of the students while playing the game, and 
found that on average the students were engaged for 65% of the time, spent 15% of the 
time sharing their progress with their teacher or peers, assisting others with operating the 
game console 10% of the time, and only 10% of the time was spent off task. Interviews 
were held with students, parents and the teacher, where the students commented that they 
enjoyed the game and had gained self-concept, the parents commented about the gaining of 
confidence and the fact that now number skills were “clicking”, and the teacher commented 
about the students’ raised level of concentration.

Issues that need to be addressed when incorporating games into the classroom are that 
the teacher’s beliefs about the game to be played, as well as the enforcement of expectations 
of the class can have a significant impact on student achievement (Main & O’Rourke, 2011). 
Another issue is that games can be distracting, so it is important to make sure that students 
stay on task. Finally, games carry novelty value (Main & O’Rourke, 2011), so the researcher 
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needs to ensure, especially if the research is to be conducted over a long period of time that 
the game does not become stale. It is through the conversations about the mathematics 
embedded in the games that the learning and language is identified and connected.

Let’s Battle!
Battleship is conceptually a very simple game. 

Played in pairs, each player has a number of ships, 
which they position on their own game board. Then, 
in turns, each player says a co-ordinate that they wish 
to shoot on their opponent’s board. The co-ordinates 
are listed as a letter for the horizontal position, and 
as a number for the vertical position, e.g. D3 . The 
opponent would then say whether one of their ships 
has been hit or missed.

Figure 1: A traditional game of Battleship.

In order to prevent the game from getting stale quickly, students can be prompted to 
try to make the game more realistic. The first prompt that could be given is that by using 
letters to represent a horizontal position, they are immediately restricted to be within 26 
units horizontally from the origin. To make it possible to go out as far in either direction as 
is desired, the only labelling convention that makes sense is to write the co-ordinate as an 
ordered pair of numbers. This is the perfect opportunity to discuss the idea of a convention 
– something that has been invented and is now well-known to the public in order to make 
lives easier and prevent confusion, and it needs to be well-established that the ordered pair 
always follows the convention that in the ordered pair, the horizontal position is listed 
before the vertical position. By continually locating and stating co-ordinates to shoot, 
students can develop fluency in the convention of co-ordinates always being defined by 
their horizontal position (called ‘x’ ), then their vertical position (called ‘y’ ).
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Direction is Reality
To add realism to the game, the students could 

be asked questions like “Is it likely that you are going 
to be backed into a corner, like in this situation 
we have been playing, and only be attacked from 
points bounded by the East and the North?” The 
obvious answer is no, in reality, in war (games), you 
could theoretically be attacked from any direction. 
So it is a logical extension to change the field of play 
from a grid with you backed into a corner (i.e. only 
playing on one quadrant), to think of yourself as 
being in a point of origin with the ability to shoot 
in, and be shot from, any direction. Extending the 
axes to show right and left (East and West) and up 

and down (North and South) creates the Cartesian plane, and now it is possible to play 
Battleship over all four quadrants.

This also gives a fantastic teaching opportunity for directed numbers. Your students 
will realise that in order to state where they want to shoot, they need to not only say how 
far away the co-ordinate is from the origin horizontally and vertically, but also in which 
direction. Rather than having to say “right, left, up, down” or “East, West, North, South”, 
introduce a new labelling mechanism, where a + is used to denote what seems natural 
(moving right and up) and a – to denote the opposite (moving left and down). Introducing 
the idea of a + or – being a direction and the number following representing a distance, and 
showing these by movement on the axes and grid, will help later when number lines need to 
be utilised to demonstrate the how four operations (addition, subtraction, multiplication 
and division) work on directed numbers.

Linear Graphs – Get to the Point 
To avoid the game from going stale, and to provide fantastic teaching opportunities 

when students first learn to draw Linear graphs, is to change the premise of the game to a 
more futuristic version, set in space, with the aim to destroy all your opponent’s spaceships. 
Students could be asked a question like “If the game was set in the future in space, what 
sort of weapons do you think they would use?” and those who like science fiction would 
probably answer “Lasers”. Then ask “If you were going to shoot at a co-ordinate with a 

Figure 2: Co-ordinates as Ordered 
Pairs.
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powerful, destructive laser, would that point be the only point that is hit?” Obviously the 
answer is no. In fact, every point in the path of that co-ordinate, and every point following 
the same path past that co-ordinate will also be hit. Graphically, this corresponds to a line, 
and there needs to be some way to tell the onboard computer where to shoot. To do this, 
we have to use a rule that defines a relationship between the x and y values of all the co-
ordinates that lie on this line. 

In the modified version of Battleship, the game is set in space, and instead of shooting 
at single co-ordinates in each turn, each player is in control of a Death Star, which shoots 
powerful, destructive lasers, the trajectories of which each player must control, in order to 
wipe out the opponent’s fleet of spaceships.

Students could be given a point that lies a decent distance away from the origin, e.g.  
(4,8) and asked to draw a line through those two points. In the beginning, it will be best to 
have the y value be an integer multiple of the x value, to make finding the rule easier. Have 
them identify all co-ordinates that have integer x value and generate a table of values, and 
ask if there is an easy way to work out what the corresponding y value would be for any 
value of x? 

Table 1
A Table of Values for 

x -4 -3 -2 -1 0 1 2 3 4

y -8 -6 -4 -2 0 2 4 6 8

It should be clear that in this case, the y value can be 
determined by multiplying the x value by 2. So the rule to 
get the y value from any x value would be . By giving 
students co-ordinates that have the y value as an integer 
multiple of the x value, not only is it easy to generate the 
rule for each line, but also to see that the number x will be 
multiplied by is the same as the number that the y value 
changes by for each unit change in x. This enforces the idea of 
this multiple of x being a constant rate of increase/decrease, 
which henceforward can be known as the gradient. 

Figure 3: Graph of  



You Sunk my Space Ship!

198

Of course, one would not want to be restricted to only choosing co-ordinates which have 
each y value be a nice integer multiple of the x value. Choose another co-ordinate, so that 
a line can be drawn through it and the origin, where the y value cannot easily be read off 
the graph for each integer x value, e.g. (3,1) . In this case, only every third value of  x can be 
read off the graph.

Table 2

x 12 -9 -6 -3 0 3 6 9 12

y -4 -3 -2 -1 0 1 2 3 4

When it has been established that the gradient is the same as the change in y from a 
unit change in x, if this cannot be read from the table of values, students need to make use 
of some proportional reasoning. From their table, they can see that their change in y is not 
1, but 3, so is three times as much as is required to evaluate the gradient. To get the unit 
change that is required, they need to divide it by 3, and so the corresponding change in y is 

also divided by 3, thereby giving a change of   in y from a unit change in x. So the gradient 

is , giving the rule . 

Figure 4: Graph of   .

Following this process, it is easy to generate a method to evaluate the gradient of any 
line, by dividing the change in y by the corresponding change in x, which can then be called 
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. What role does the gradient have in the game?

My Head is Spinning 
When playing the modified game of Battleship (rules given in Appendix 1), once a 

player has hit one of their opponent’s spaceships at a point, they will need to think of a 
strategy to hit the ship at other points in order to sink/destroy it. If students have had the 
chance to simulate what changing the value of the gradient in the rule y=mx will have, they 
will notice that if the value of  m is positive, the line slopes upwards, and if the value of  m 
is negative, the line slopes downwards. They will also notice that increasing the value of   m 
makes the line steeper, while a decrease will make the line less steep. Therefore, a change in 
the value of m  in y=mx  corresponds to a rotation about the origin, thereby giving students 
a strategy to be able to hit a second point on the ship.

As an example, consider the case in Figure 2, where it has been found that the shot   

 has hit a ship at (3,1). It could be guessed that the ship is placed either horizontally 

or vertically. If the player wanted to shoot at a point one unit above where the ship was hit, 
a rotation of the laser could be an appropriate strategy. Choosing to have the point (3,2) 
be shot through, the player would note that from the origin there is a change in y of 2 units 

and a change in x of 3 units, thereby making a gradient of  and an equation of   

for the next shot.

Figure 5. A rotation of the line about the origin by changing the gradient
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Evaluating gradients gives a powerful, visual display of some operations on directed 
numbers, so by gaining some practice with evaluating gradients, and hence, equations, 
of lines by choosing a point, students may gain a deeper understanding of operations on 
directed numbers. 

From the origin, choosing a point in the first 
quadrant, which corresponds to a movement to 
the right and a movement up, gives a line sloping 
upwards from left to right, so a positive gradient, 

thereby showing that . 

Figure 6: Movement Right and Up Gives Positive Gradient

A point in the second quadrant, which 
corresponds to a movement left and a movement 
up, will give a line sloping downwards from left to 
right, so a negative gradient, thereby showing that 

. 

Figure 7: Movement Left and Up Gives Negative Gradient



Hayden McQueenie

201

A point in the third quadrant, which corresponds to 
a movement left and a movement down, will give a 
line sloping upwards from left to right, so a positive 
gradient, thereby showing that  

. 

Figure 8: Movement Left and Down Gives Positive Gradient

A point in the fourth quadrant, which 
corresponds to a movement right and a movement 
down, will give a line sloping downwards from left 
to right, so a negative gradient, thereby showing 

that .  

Figure 9: Movement Right and Down Gives Negative Gradient

Lost in Translation 
Of course, rotation of a line about the origin is not the only possible strategy that 

could be employed when playing this game. In the situation shown in Figure 10 below, 
a rotation about the origin could prove to be detrimental rather than beneficial, due to 
needing to take two at least two turns in order to hit both ships again. Here, simply moving 
(translating) the line vertically while keeping the same gradient could enable both ships to 
be hit at the same time in the next turn.

To introduce the idea of translating a line, give students a simple line, like y=3x, and 
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then ask them to draw a line of the same slope but 
from one unit down on the y axis, so from the point 
(0,-1) . Ask them to generate a table of values from 
the original line and from the new line. It should 
be easy for them to see that the values are almost 
the same, just having been adjusted by having 1 be 
subtracted from each of the values from the original 
line y=3x. So the equation of the new line must be 
y=3x-1. 

Figure 10: Translation of the Line Enables Both Ships to be Hit Again

Table 3
A Table of Values Comparing  y=3x to y=3x-1.

 
x -4 -3 -2 -1 0 1 2 3 4

y1 -12 -9 -6 -3 0 3 6 9 12

y2 -13 -10 -7 -4 -1 2 5 8 11

By experimenting by drawing parallel lines through different   intercepts, it should be 
clear that making a vertical translation is equivalent to making a numerical adjustment to 
the   values of the original graph, and therefore a numerical adjustment to the rule y=mx  
to y=mx+c, where c, being the number of units adjusted vertically from the origin, also 
corresponds to the y intercept of the graph.

The Sky’s the Limit
Since the game is played with the ships positioned vertically or horizontally, it is quite 

possible that, from the simulation that this game provides, students could discover the rules 
for vertical and horizontal lines, x=constant and y=constant respectively, and thereby wipe 
out entire fleets in just a few swift strokes. To prevent the game from going stale, here are 
some ideas to further extend the game and make it more realistic.

•	 With such an emphasis on the idea of direction, it is prudent to discuss other 
ways that a position could be identified. Instead of “How far horizontally? How 
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far vertically?”, why not introduce “How far away in a straight line? In which 
direction? (i.e. at what angle?)”, thereby introducing polar co-ordinates. It is 
also possible (and advisable) to play on a polar grid, as it better simulates how 
radar works, and would make it easier to place ships in positions that are neither 
horizontal nor vertical, while maintaining their correct “length”.

•	  The Death Star could be made more powerful, to not just shoot lasers in a straight 
line, but lasers that could cover a greater region. To model this phenomenon, 
linear inequations would need to be employed.

•	  In space, you are not restricted to be shooting from a single height, but rather a 
variable height. So why not try playing the game in 3 dimensions?

The benefits of playing games in mathematics are numerous, and the areas of 
mathematics that are accessible to students from playing and modifying this game are 
simply mind-boggling, so don’t be afraid to experiment. Space is a huge place, so give your 
students a chance to explore.

Appendix – Rules for Battle Spaceship
These rules have been modified from the rules of Battleship by Hasbro Games (2002). 

The game can be played with pen and paper, but it is much easier and more beneficial 
to use a dynamic geometry program. The instructions given are for use with Geometer’s 
Sketchpad, but can easily be adapted to another program or graphing calculator.

Getting Started 
•	 Open Geometer’s Sketchpad
•	 From the Graph menu, select Define Coordinate System. This will upload a set of 

axes and a Cartesian grid.
•	 From the Graph menu, select Snap Points. This will cause the points you create to 

“snap” to corners in the grid.
•	 There are two points already on your grid. The first is at the origin. By clicking and 

dragging this point, you can move the entire grid. Do not touch this point. The 
second is at the point (1,0) and is used to change the scale of the grid. Click and 
drag this point so that the vertical axis shows the range [-5,5].

•	 We wish to create a 10x10 grid, so from the Graph menu, select Plot Points. 
Rectangular should be selected. Plot the points (5,5), (-5,-5), (-5,5) and (5,-5).

•	 Select (highlight) the points (5,5) and (-5,5) that you have just drawn. From 
the Construct menu, select Segment. This will create a segment between the two 
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points. Follow the same process with the other points to create the outline of your 
10x10 grid.

•	 Highlight the six points on your screen. From the Display menu, select Hide 
Points.

Prepare for Battle 
You and your opponent may only look at your own screens. You each have in your fleet:
•	  One Aircraft Carrier (takes up 5 coordinates)
•	  One Battleship (takes up 4 coordinates)
•	  Two Destroyers (takes up 3 coordinates)
•	  One Patrol Ship (takes up 2 coordinates)
•	  One Death Star (you do not need to show your Death Star on your grid).
Secretly place your five ships on your grid. 
To place each ship, select the Segment Straightedge Tool from the left hand side of 

your screen, and draw line segments to represent your ships. They are to take up as many 
coordinates as listed above.

•	  Place each ship in any horizontal or vertical position within your grid, including 
on or over the axes, but not diagonally.

•	  Do not place a ship so that any part of it touches or overlaps the edge of the grid 
or another ship.

•	 Do	not	change	the	position	of	any	ship	once	the	game	has	begun.	Your	Death	Star	
is the only part of your arsenal that may move during battle.

Your Death Star is equipped with extremely powerful lasers that can shoot in a straight 
line in both directions and cause damage to anything in its path. You need to tell the 
onboard computer of the Death Star where to shoot the lasers, by inputting the equation 
of trajectory.

How to Play 
Decide who will go first. You and your opponent will alternate turns, calling out one 

equation of your laser’s trajectory per turn, to try to hit each other’s ships.

Call Your Shot 
On your turn, pick a target position on your grid and call out the equation of a line 

which will pass through this point. 
To show this line on your grid, select Plot New Function from the Graph menu.
In the Equation drop-down menu, select y=notation, then type in the Right Hand 
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Side of the equation of your graph. E.g. if you wanted to graph y=2x , you would type 2x. 
Select OK and your laser’s trajectory will be shown on your grid.

When you call a shot, your opponent must tell you whether your shot has hit anything 
or has missed.

It’s a Hit! 
If your laser has hit any ships on your opponent’s grid, your shot is a hit! Your opponent 

tells you which ship(s) you have hit (destroyer, aircraft carrier, etc.) and the points at which 
they have hit.

Record your hits by plotting the point. This is done through Plot Points in the Graph 
menu. Have all the points that represent something that you have hit in red.

It’s a Miss!
If your laser does not hit anything in your opponent’s fleet, it’s a miss. Keep the graph 

of the trajectory on your grid though, to show what you have already done.

Your Opponent’s Turn 
Your opponent will follow the same procedure as you did. You will graph their laser 

beam in the same way you graph your own, but use a different colour. You can change its 
colour by selecting (highlighting) the line, and choosing Color from the Display menu.

If the laser beam hits any of your ships, click on the intersection of the “laser beam” 
with your “ship” by moving your curser over the intersection and clicking. Change its 
colour in the same way that you changed the colour of the line.

Destroying Ships 
Once a ship has as many hits as its length (e.g. an Aircraft Carrier has been hit in 5 

different spots, a Destroyer has been hit in 3 different spots), it has been destroyed. The 
owner of the ship must announce which ship was destroyed.

Winning the Game
The first player to destroy your opponent’s fleet of five ships wins the game.
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MATHEMATICAL PEDAGOGY – 
TRADITIONS, TECHNOLOGY AND 
LUMERACY

Rama Ramakrishnan

Bullsbrook District (K-12) School

Teachers around Australia have made significant progress in 
recent years towards achieving effective integration of technology 
in their classrooms, in the senior and junior secondary years, to 
enhance and engage students’ learning of mathematics. Computer 
Algebra System (CAS) similar to Texas Instrument’s TI-Nspire 
machines when combined with classroom networking i.e. 
connected classrooms, similar to Texas Instrument’s ‘Navigator’ 
wireless communication systems enhance the pedagogy and ‘risk 
taking’ by the learners. These combined with the use of Lumeracy 
resources will engage and inspire the students. Teachers have also 
been using other CAS machines, however without the facility for 
connected classrooms.
The word Lumeracy was coined by Kuppuswamy Ramakrishnan 
(known as Rama), Teacher and Educationalist in 2011 who 
defined it as a word to represent being educated with knowledge 
to read, write and use numeracy, manage information, express 
ideas and opinions, communicate in an ethical manner, make 
decisions and solve problems. 
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Aspects of Mathematical Pedagogy 
Mathematical pedagogy has been undergoing a paradigm shift albeit slowly since 

the 1950’s due to the beginnings of space exploration requiring the learning of functions 
as well as patterns, higher algebra rather than basic arithmetic and geometry as well as 
vocational mathematics. Prior to this teaching was based on learning facts and completing 
repetitive sums rather than conceptual and contextual learning. Although this shift meant 
drastic revisions to teaching from the past, the catalyst was needed for people to acquire 
skills required in computing, functions and advanced spatial concepts and the teaching 
of algebraic concepts. That was the beginning when one could say that “(m)athematics 
education has broke[n] free of its chains” (Bergamini, 1970).

To meet such complex needs, teachers around Australia have made significant progress 
in recent years towards achieving such change by the effective integration of technology 
in their classrooms, in the senior and junior secondary years. This has enhanced students’ 
learning and engaged them in mathematics. Australian teachers have been at the forefront 
of the development of both innovative and powerful curricular resources and effective 
pedagogic strategies from which teachers elsewhere have been able to benefit. These skills, 
strategies and resources have led to the use of the next generation of mathematics and 
science learning tools which are embedded in Computer Algebra Systems (CAS).

According to the Cockcroft Report, 1982 (as cited in Grimison & Pegg, 1995), 
mathematics teaching at all levels should include opportunities for exposition by the teacher, 
discussion between teacher and pupils and between pupils themselves; appropriate practical 
work, consolidation and practice of fundamental skills and routines, problem solving, 
teaching the application of mathematics to everyday situations, and investigational work. 

In addition, the National Statement on Mathematics for Australian Schools (AEC, 
1991) had a lot to say about the importance of language and culture in mathematics 
teaching and learning. Mathematics was no longer seen as a body of collected facts, routines 
and skills to be passed on to students but a dynamic creative process involving invention, 
intuition and discovery. 

However, “a great deal of energy continues to be expended in educational debates on 
the nature and significance of literacy and numeracy” (Chapman & Alison, 1990). There is 
an increasing demand on language skills as students talk with each other and their teacher 
about their mathematical activities. In the process they begin to construct mathematical 
concepts for themselves. Further, mathematics today needs to be connected to other fields 
of study. The Australian Curriculum: Mathematics (ACARA, 2012) states: 
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mathematics is composed of multiple but interrelated and interdependent 
concepts and systems which students apply beyond the mathematics classroom. 
In science, for example, understanding sources of error and their impact on 
the confidence of conclusions is vital, as is the use of mathematical models in 
other disciplines. In geography, interpretation of data underpins the study 
of human populations and their physical environments; in history, students 
need to be able to imagine timelines and time frames to reconcile related 
events; and in English, deriving quantitative and spatial information is an 
important aspect of making meaning of texts. (ACARA, 2012)

Current State of Play
Technology in the form of Computer Algebra Systems (CAS) and/or CAS along 

with the Texas Instrument’s Navigator wireless communication systems goes hand in hand 
with mathematical pedagogy. It provides multiple representations of functions, dynamic 
geometry and sophisticated statistical analysis in addition to routine mathematical 
computations. For those who are unfamiliar with the ‘navigator’ system, the Texas 
Instrument (TI)’s Computer Algebra System (CAS) machine which is called the TI-Nspire, 
communicates wirelessly with the teacher and students through a wireless desktop unit that 
displays all CAS screens and information on to the whiteboard through software installed 
on the computer via a data projector. Setting up of a class takes couple of minutes. A class 
list with names is typed into a new list and students assign their own passwords. When you 
start the class by clicking on the “start the class” command, students get a login screen and 
they can communicate by typing in information. The teacher can send files to students and 
can receive answers in different available formats. The teacher may choose to run the class 
with all students’ screens on the whiteboard. In addition the teacher can make one student 
the presenter (showing only that student’s screen in real time).

Lumeracy
The issue of language is best addressed by the concept of Lumeracy. I propose the 

coining of a new term Lumeracy and defining it as “a word to represent being educated 
with knowledge to read, write and use numeracy, manage information, express ideas and 
opinions, communicate in an ethical manner, make decisions, and solve problems”.

There is also still a great deal to learn about effective ways of using technology in 
the teaching of mathematics. While technology can enhance and /or show multiple 
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representations, improve the mathematical pedagogy, language becomes critical in clarifying 
and interpreting problems and the results obtained using mathematical methodology. 
This obstacle could be overcome by making students lumerate, as opposed to literate and 
numerate in the traditional sense.

What is considered as a Lumeracy resource is one that is rich in thinking in 
mathematical ways and crosses all learning areas of knowledge. It connects natural world 
with its mathematical beauty, the history of mathematics along with the mathematicians 
and the culture of their time with current world connections. Lumeracy resources make the 
learning of Mathematics interesting, absorbing, enjoyable and above all fun.

Some examples of the resources, most of which can be obtained online are: 
•	 Mathematics – a human endeavour ( Jacobs, 1992);
•	 Mathematics- a time-life book (Bergamini,1970);
•	 The man who counted (Tahan, 1993);
•	 Math through the ages, a gentle history for teachers and others (Berlinghoff & 

Gouvea, 2002);
•	 Anno’s mysterious multiplying jar ( Anno & Anno, 1983);
•	 The number devil: A mathematical adventure ( Enzensberger, 1998); 
•	 Fractals, googols, and other mathematical tales (Pappas, 2010); 
•	 What’s your angle, Pythagoras? A math adventure (Ellis,  2004);
•	 The adventures of Penrose the mathematical cat (Pappas, 1997); 
•	 Mathematics appreciation (Pappas, 1993);
•	 The magic of mathematics: Discovering the spell of mathematics (Pappas, 1994);
•	 The music of reason: Experience the beauty of mathematics through quotations. 

Pappas,1995);
•	 Mathematical scandals (Pappas, 1997); and
•	 Math-a-day: A book of days for your mathematical year (Pappas, 1999).

Conclusion
Several schools around Australia are using Computer Algebra Systems (CAS) and/or 

CAS along with wireless communication systems to enhance the pedagogy and ‘risk taking’ 
by the learners. CAS has facilities for calculations, graphing, spread sheeting, statistical 
analysis, dynamic geometry, document organising and storing and commands and the 
system is compatible with a PC to download and upload files.

Anecdotal evidence suggests and supports the research that this kind of teaching 
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and learning provides for deeper opportunities to learn concepts and the ingredients for 
student success. Networking capabilities also increases students’ participation, engaging 
students in mathematical thinking and anonymous communication and the opportunity 
for open discussions makes thinking ‘visible’. This system fits in well with what has been 
learned in the past on how students learn. Learning occurs when a student makes sense of a 
new concept/idea and takes ‘risks’ and learning necessarily involves interactions with other 
learners (Perso, 2000)

Further research is needed to fill the gaps in the existing literature and to help 
curriculum developers with cues on use of technology and the type of technology.  While 
research work has been undertaken in Australia on the use of technology in classrooms very 
little research work has been carried out in the use of wireless technology for connected 
classrooms.  Some research work has been undertaken in United States of America.  The 
results of a pilot study at a private school, which has used the wireless classroom networking 
system for a few years, (Ramakrishnan, 2011), showed that students and teachers are 
positively in support of the use of CAS in combination with the wireless system and they 
have stated that this combination has improved the conceptual understanding to some 
extent. Conceptual understanding being a cornerstone in mathematics learning and leads 
to general heuristic thinking which in turn helps students in solving mathematical problems. 
These problem solving skills are essential in further higher mathematical studies and in the 
successful mathematical functioning of an individual. Connected classrooms with the 
facility for student anonymity make them ‘risk takers’ with consequent improvement in 
their learning. The power of instant diagnostic capabilities gives a superior edge to the 
teacher’s skills.
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REVITALISING AN OLD FAVOURITE: 
USING INTERACTIVE NSPIRE CAS 
TECHNOLOGY TO TRANSFORM 
A GOOD LESSON INTO A GREAT 
LESSON

Roger Wander

Melbourne Graduate School of Education – University of Melbourne

Experienced teachers will know particular lessons they’ve taught 
in the past which have really hit the mark. No matter when they 
were first developed, many of these good lessons can be improved 
through judicious use of interactive mathematics technology. The 
author uses three examples of recent advances in Nspire CAS 
technology to rewrite a 2009 lesson plan in a manner which is 
designed to increased student participation. Teachers are then 
challenged to consider doing the same to their own favourite lessons. 

The Old Lesson 
In 2009, researchers from the Melbourne Graduate School of Education’s New 

Technologies for Teaching Mathematics project developed a lesson known as the Surd Spiral 
for their research schools, based on earlier work by Stacey and Price (2005). It used TI-
Nspire CAS technology to explore patterns in surd expressions through a geometric model 
(HREF1, 2009). The lesson materials which were developed at the Victorian Year 10 level 
used the various features of TI-Nspire CAS which were available at the time, including 
the ability of the Lists & Spreadsheets application to record values in exact (in this case, 
surd) form in a spreadsheet. This supported the goals of the lesson, which revolved around 
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students discovering the usefulness of exact/surd expressions in being able to predict and 
generalise patterns (HREF2, 2009).

Documentation developed by the researchers included a detailed lesson plan with 
technology hints for the teacher, and a student worksheet. The style used in the worksheet 
was one where some general and some specific instructions were given to students regarding 
their exploratory activity. The original structure of the lesson was based on a series of teacher-
led whole-class acivities. The students would be directed to read some information, perform 
mathematical tasks, discuss and compare interim answers within a small group, and write 
generalisations and intermediate conclusions at regular intervals throughout the lesson. 

As with most mathematics lessons, its success could be measured by the extent to which 
students contributed verbal as well as written responses to questions posed by both static 
worksheet and engaging teacher. Students working on an in-class investigation in small 
groups however, are often prone to letting the clever one amongst them act as spokesperson 
for the group. Typically the process work of the majority of students is often not apparent 
within in this type of lesson.

New Possibilities
Recent developments in technology (here, TI-Nspire CAS Navigator software) now 

allow teachers to constantly monitor individual students’ handheld devices in real time, 
conducting timely formative assessment designed to gauge the extent of understanding and 
engagement within the entire class. Digital images can be analysed on handheld devices 
using geometric and graphical applications. Students can also be empowered to share their 
findings and solution techniques using a student-as-presenter feature, providing avenues 
for expression and engagement for students less inclined to “come up and show us how you 
got that”. Expanding the number of student contibutors to discussion can positively change 
the culture of the classroom to one in which making mistakes provides a necessary pathway 
to new learning opportunities. This would be consistent with the teacher discourse patterns 
named by Turner and Patrick (2004) as being critical to improving learning outcomes  
for all students.

Examples of how these techniques can be used to enhance the Surd Spiral lesson follow. 
It is recommended that the reader familiarise her/himself with the student worksheet 
found on the RITEMATHS site (HREF1) before continuing.
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Working with Digital Images
The Surd Spiral is created by building a series of succesive adjacent right-angled 

triangles around a fixed point (in Figure 1 below, point A) and starting with the familiar   
 isosceles triangle (ΔABC or Δ1, below) so that for any triangle other than the 

smallest the shortest side is 1 unit in length. Also, the middle-length side is the hypotenuse 
of its preceding triangle.

Figure 1. The first three triangles of the Surd Spiral

The diagram shown in Figure 1 is seen in the student worksheet in Activity 1 on page 
1. In the original version of the lesson, students use this diagram to place the next point 
(F) in its approximate position. Teachers in a traditional classroom would walk around 
and observe random students placing F (using a pencil and a ruler) one unit from E and 
on a perpendicular to  ; students in a small group might compare their placements by 
swapping worksheets. The teacher’s interaction would be with one or two small groups of 
students, or perhaps individuals. Time constraints would prevent all students’ work from 
being observed in the interests of moving on with the lesson.

In an Nspire Navigator classroom, the image (saved as a .jpg file) seen in Figure 1 can 
be inserted as the background to a Graphs or Geometry application within a one-page 
Nspire document sent to the students’ handhelds at the moment the teacher decides the 
class is ready to work on it. Figure 2 shows how this would appear in a Graphs application.
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Figure 2. Placing a worksheet image in the Nspire Graphs application

The class activity, replacing pencil and ruler with handheld technology, has now 
become 

•	 Placing point F with a visual estimate on the handheld screen,
•	 Measuring  and   to refine that estimate, and 
•	 Observing and critiqueing any selected student’s work-in-progress being displayed 

live for all to see.
Every student with a handheld device is now a potential public contributor to the 

learning process, and knows the teacher is but a click away from handing over the main display 
to that student. The teacher’s professional judgement can thus improve students’ “affective 
engagement” (Pierce et al, 2007) and minimise the disengagement experienced by many.

Using a QuickPoll to discuss Algebraic Equivalence
Activities 2 and 3 of the lesson involve students exploring the ever-increasing 

perimeters of the first 13 triangles in the Surd Spiral, expressed in exact surd format. These 
are generated in a Lists & Spreadsheets application after a formula for the perimeter of the 
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nth triangle is discovered to be  units. Questions 9 through 12 in 
Activity 4 of the lesson then require students to investigate the (assumed positive) difference 
in the perimeters of various pairs of specific successive triangles, in establishing whether or 
not that difference is constant.

Question 13 of the original version of the lesson then asks students to then generalise 
that difference for any two adjacent traingles in the Spiral. Again, there is an expectation of 
pencil and paper working out leading to the simplified result of  units, 
although CAS features of the Calculator application could be used at the teacher’s discretion.

An opportunity now exists for students to do that work as before, but then to 
electronically submit their result to the teacher through the Question application (here, an 
Expression type) formatted as a QuickPoll (see Figure 3, below).

Figure 3. QuickPoll for student responses to Activity 4, Question 13

The pedagogical opportunity here for teachers is quite interesting. After all 
expressions are submitted, they can be displayed as data in a bar graph, which will 
show the various responses and how many students submitted each variation – which 
could be quite a wide range in some cases. The correct (as formatted ahead of time 
by the teacher) expression of   will stand out in a different colour, 
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and the teacher has the option of also activating any equivalent expressions such as  
. These can be compared to the near-misses 

such as ; the processes of simplification and 
correct use of brackets can then be discussed. Any student’s working out done on the 
Calculator screen can also be viewed in the manner described earlier. Thus, the range of 
student responses can be analysed by those same students. 

Using Multiple-Choice to Discover Patterns and Lead to Proof
In Activity 5 of the lesson students turn their attention to investigating area rather 

than perimeter, discovering that the area of triangle n is  units2. Question 24 of the 

original lesson asks them to find which triangle has an area 100 times that of Triangle 100; 
the correct answer is Triangle 1 000 000.

There are, in fact, an infinite number of pairs of Surd Spiral triangles which have this 
100:1 ratio of their areas. The algebraic proof of this fact is neat, concise and achievable 
either with or without CAS assistance, but not for many Year 10 students. Nspire’s 
Question application using the Multiple-Choice feature (where more than one option can 
be correct) can be employed as a QuickPoll as shown in Figure 4 below (note the computer 
view of the Question application to be able to see the complete text):

 

Figure 4. Multiple-Choice QuickPoll to promote investigation of patterns

The format of this Multiple Choice item implies a trial-and-error approach will be 
sufficient to answer the question successfully, providing a somewhat safer environment for 
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hesitant students than an open response question. Students who perform the calculations 
correctly will discover that four of the seven pairs satisfy the required area ratio. There will 
be some who choose incorrect pairs and others who do not find all four correct pairs. As 
in the previous example, when the teacher displays the results of the QuickPoll the correct 
answers can appear highlighted. Discussion can then be directed towards finding the 
linking feature between triangle numbers (a ratio of 10000:1), the infinite nature of the 
solutions, and the associated algebraic proof for more able students.

Conclusion
Providing an environment which attracts and maintains students’ attention and 

engagement is a constant challenge facing secondary mathematics teachers. Technology 
such as TI-Nspire Navigator invites a deeper level of participation from students than 
might have been possible in years past, and there are plenty of new activities written for 
these emerging technologies.

The examples shown in this paper have been presented to encourage experienced 
teachers in particular to look also at those existing lessons, worksheets and activities from 
their earlier years of teaching. If they can be reformatted to include opportunities for 
increased student engagement and for better teacher monitoring of student progress during 
lesson time rather than at the conclusion of the unit of work, improvement in attitudes 
towards and outcomes in mathematics learning might be possible for more of our students.
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Children are naturally interested in games as they depict a 
sense of fun while they are immersed in them. The experience 
of incorporating games in a school will be shared and how some 
of these selected games can be linked to mathematics will be 
discussed. A literature review on the impact of playing games and 
mathematics will also be shared.

Introduction
Board games have been around since BC 3500 and are still around. The Royal Game of Ur, 

the oldest complete set of gaming equipment ever found, the Senet appears in Egyptian 
dynastic history through the 4th century B.C. to the more familiar games like Snakes and 
Ladders in India in the 1200’s and Checkers in the 1500’s (History of Games Timeline, 
2001). However the popularity of board gaming began in the early 1960s and Hasbro, 
the world’s largest gaming manufacturer, reported record sales of board games in 2003. 
In 2004, it was deemed as a Golden Age of gaming (Shapiro, 2004). 

Hence a neighbourhood primary school with pupils from grades 1 to 6 in Singapore began 
to explore the implementation of games to engage the pupils both in and out of the 
classroom. Pupils in these grades are from 7 to 12 years old and hence interested in 
games. The games aim to develop their interest, beliefs, appreciation, confidence and 
perseverance under the attitude component in the mathematics framework. They 
also develop numerical calculation, spatial visualization skills, monitoring and self-
regulation of learning and reasoning, communication and connection in the process 
component in the mathematics syllabus (Curriculum Planning and Development 
Division, 2006). 

The theme ‘Mathematics Everywhere’ was chosen to represent the pervasiveness of 
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mathematics learning through games in the school. It is also hoped that through 
games, pupils will enjoy their learning in mathematics and more importantly develop 
crucial values like losing graciously, cooperation, taking turns and responsibility for 
maintaining the games. 

Review of Literature
Ernest (cited in Ainley, 1990) claimed that games could teach mathematics effectively 

in four ways namely providing reinforcement and practice of skills, providing motivation, 
helping the acquisition and development of concepts, and developing problem-solving 
strategies. Ernest argued that motivation and attitudes are the likely reasons for the success 
of games in mathematics. However, games are often used as a reward for those who have 
completed their work earlier and thus the pupils who need the games to motivate them 
in their learning would get the least (Ainley, 1990). Thus games should be incorporated 
into the school curriculum and allow all the pupils to have access to them. Games can 
assist pupils in learning the processes in mathematics, predicting and testing, conjecturing, 
generalizing and checking and justifying (Ainley, 1990). These processes can be achieved by 
carefully selecting games which will lead pupils to demonstrate and practice these processes. 
In the game Crossing all these processes could be incorporated in the game (Ainley, 1990). 
The game only requires a board which resembles a chess board and a 1-6 die. With that, 
2 – 3 players can be engaged meaningfully in having fun and yet learn the processes in 
mathematics.  

Harkness and Lane (2012) also find that the processes of specializing, conjecturing, 
generalizing and convincing could be incorporated into games. They illustrated these in 
three game shows – Survivor, The Biggest Loser, and Deal orNo Deal? However they find 
that data indicated that students did not engage in the process of mathematical thinking 
unless directed to do so. Thus this illustrates the importance of deliberately planning for the 
thinking process to occur when pupils are playing games. 

Civil (2002) explores the three different kinds of mathematics namely school 
mathematics, mathematicians’ mathematics in the school context and everyday mathematics 
and uses games to study the impact of games on these three kinds of mathematics. The 
Game of Nim is an example (Civil, 2002). This game involves a single pile of 12 pieces 
and two players. Each player takes 1, 2 or 3 pieces, and the player who takes the last piece 
is the winner. Hence pupils may play the game at random with no specific strategy in 
mind. But the teacher can plan for the pupils to find a winning strategy in this game, to 
leave the opponent with the last 4 pieces. It is found that pupils participated in the game 
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when it was related to everyday mathematics but withdrew when it progressed to more 
formal mathematics. It is also found that pupils who seemed to be uninterested in academic 
mathematics developed positive attitude in the everyday mathematics started discussing 
and even helped another pupil. In the process, questioning and conjecturing took place 
and technical vocabulary and definitions were investigated through the discussions. Thus 
games could be an effective tool to engage pupils in the learning of mathematics but if the 
emphasis is on the school mathematics, then pupils may withdraw quickly as they may deem 
the games to be another academic learning exercise which the pupils are already avoiding. 
Hence games should be seen as an extension instead of a direct replacement of what is 
taught in a formal mathematics lesson for it to engage the pupils.

So what are games? Bright, Harvey and Wheeler (1985) listed 7 criteria:
1. A game is freely engaged in.
2.  A game is a challenge against a task or an opponent.
3.  A game is governed by a definite set of rules.
4.  Psychologically, a game is an arbitrary situation clearly delimited in time and space 

from real-life activity.
5.  Socially, the events of the game situation are considered in and of themselves to be 

of minimal importance.
6.  A game has a finite state-space (Nilsson, 1971). The exact states reached during 

play of the game are not known prior to beginning of play.
7.  A game ends after a finite number of moves within the state-space.
Bright, Harvey and Wheeler’s comprehensive list of criteria addresses the various 

domains of learning from the psychological perspective to the social domain. Games will 
help pupils to exercise the spatial visualization skill in the skills component in the syllabus 
(CRPP, 2006). As the pupils play the games, they will have to visually consider the moves 
and the implications behind each move before deciding to act. Thus games are in themselves 
attractive to pupils and hence pupils will want to be engaged in the games. It is up to the 
teachers to devise and structure the games to develop the various aspects in the learning 
of mathematics; attitude, processes, mathematics contents, skills and metacognition as 
indicated in our mathematics framework. (CRPP, 2006)

Mathematics Everywhere
The first consideration is to decide on the types of games that will meet the needs 

of the pupils. The second consideration is the progression of these games so that pupils 
will experience success and development in the process, skills, metacognition, concepts 
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and attitude. The final consideration is the time and space for the teachers and pupils in 
implementing the games. 

The fundamentals in learning mathematics are looked into and games that meet these 
basic requirements are implemented. Pupils need to build up the multiplication tables of 
2, 3, 4, 5, 6, 7, 8 and 9 and commit to memory by grade 3. Hence a traditional game of 
hop-scotch is designed and painted on the floor in the canteen for the pupils to play. In the 
process of hopping from one box to another, they have to recite the multiplication tables 
slowly forward and backward as they hop forward and backward to complete the game. 
Pupils could be involved in the game of hop-scotch during recess or after school while 
they are waiting for the school bus or another school activity. Teachers could also arrange 
for some of the pupils to go to the canteen to practice the multiplication tables while the 
teacher conducts a separate activity for another group of pupils. 

Another foundation is the four operations where we would like the pupils to calculate 
the addition, subtraction, multiplication and division of 2-digit numbers mentally. Hence a 
‘Open & Close’ game is sourced and mounted on a wall along a walkway. In this game, pupils 
have to open a card which will reveal an answer or a question. The pupil will have to open 
another card to match the answer or the question. If they match, the pupil scores one point. 
If the cards do not match, the pupil will turn over the cards and the next pupil continues 
with the game. Thus the pupils have to know their addition, subtraction, multiplication 
and division operations well. They will also need to apply the skills learnt like count on, 
near doubles, make tens, partial products to calculate efficiently. Memory will always be 
needed in any learning. Hence by turning over the cards, the pupils will have to remember 
the positions of the various cards which have to be turned over because their peers do not 
get the matching cards. That will help them to understand the position of each card as well 
as the relative positions of two or more cards. The vocabulary used will be dependent on the 
levels of the pupils. The pupils may use

top, bottom, left , right initially and progress to north, south , east , west later. Thus 
there are multiple opportunities for pupils to develop the learning in mathematics. An 
extension of the activity will be to engage pupils to look at the relationship between the 
operations and within the operations. What do you notice when I add 2

numbers and multiply the same 2 numbers? Explain. Is it always true that when you 
multiply two numbers as compared to adding two numbers, the answer will be greater?  
2 x 3 = 6 is greater than 2 + 3 = 5. 2 x 1 = 2 is not greater than 2 + 1 = 3. Hence pupils do 
make conjecture and generalize before they verify with a counter example to show that it is 
not true all the time. What do you notice when I add 2 numbers and reverse the order of the 
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numbers? Explain. 2 + 3 = 5 and 3 + 2 = 5 will lead the pupils to understand that addition 
is commutative. The process of making a conjecture, generalizing and then verifying with 
sufficient examples but not a formal proof at the primary level will help pupils in the process 
in mathematics.  Is that true for subtraction? Why? By structuring the learning either in 
the form of questions posed by the teachers or having ‘Game leaders’ who will man the 
games and able to extend the learning of the pupils, the pupils will be able to progress and 
reinforce their learning at a pace that is comfortable to them.

These games are carried out outside the classrooms. Another set of games are carried 
out in the classrooms. They are structured by levels and each level will have a set of games to 
engage them. Some examples are listed in Figures 1 and 2 below.

Math Games Inventory List (Primary 2)
Class: 2 / ____

Name of Game Quantity

Smart Driver

Tortoise Chess Game

Doctor’s Ball Game

Chameleon Game 

Line up 4

Connect-a-cube (100 pieces) 

Total number of items

Figure 1. Games for a grade 2 class
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Math Games Inventory List (Primary 3)
Class: 3 / ____

Name of Game Quantity

Perilous Single Plank Bridge Game 

Tortoise Chess Game

Frog Chess Game 

Line Up 4

Puzzle Cards

Stereography

Tower of Hanoi 

Red and Black Cubes

Tangram 

Doctor’s Ball Game

Total number of items

Figure 2. Games for a grade 3 class

These games are played before school once a week and a double period in mathematics 
is planned in the timetable each week for games. Thus teachers and pupils have a structured 
and planned time to play the games. Pupils are required to understand the rules of the games 
which are similar to the rules that pupils need to adhere to when they do mathematics. 
Then the pupils are supposed to play the games to win and then reflect on the strategies that 
help them to win. Hence a play stage will lead them to be more conscious of the pattern in 
a winning strategy. That will indirectly lead them to the process of conjecturing, looking 
for a pattern to generalize and then playing the game using the strategy to verify if their 
conjecture is correct. 

Some Findings
Do student teachers and pupils believe that games do help pupils in their learning? Are 

games the choice of the student teachers and pupils in teaching and learning? The findings 
indicate that for student teachers and pupils to incorporate games in their lessons, much 
work remains to be done to convince both parties that games can be another resource to tap 
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on. The 25 student teachers are in their first year post graduate diploma study and 39 pupils 

in grade 6 in a neighbourhood school.

The findings are shown in Table 1 below.

Table 1. Ranking of Preferences of Pedagogies 

Pedagogies
Student Teachers Pupils

Personal Class Personal Class

Game 3rd 4th 3rd 4th

ICT 2nd 3rd 1st 2nd

Story 5th 5th 5th 3rd

Cooperative learning 4th 2nd 2nd 1st

Manipulative 1st 1st 4th 5th

Five pedagogies are selected namely game, information and communication technology 

(ICT), story, cooperative learning and manipulative. In Table 1, the personal preference of 

using game is the student teachers’ third choice and if they were to use game in the class, 

it drops to the fourth choice. There is a close match of their personal preference to what 

they would actually do in class. Comparing the expectations of the pupils, personally the 

pupils would rank the use of game as their third choice which is aligned to the student 

teachers’ preference. In class, the pupils rank game as the fourth choice and it is aligned 

to that of the student teachers. Overall, game is not the student teachers nor the pupils 

top choice. This could be due to the difficulty of relating game directly to the learning 

in mathematics. Also game is not commonly associated in mathematics. Manipulatives 

and the use of ICT are more commonly advocated in schools due to the mass roll out of 

manipulatives to all schools for grades 1 and 2 pupils and the masterplan 3 for ICT in 

schools in 2009. Hence manipulative figured strongly as the first choice for the student 

teachers for both personal and in class. This could be strengthed by the emphasis during 

their training that manipulatives would be helpful to help the pupils in the concrete stage 

of learning. However for the pupils, ICT and cooperative learning are their top two choices 

personally and in class. This could be that they are already in grade 6 and hence are able to 

think in the abstract stage.
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Conclusion
The use of games has opened up another possibility in the teaching and learning in 

mathematics. There is still much work to be done to convince teachers and pupils of the 
values that games can contribute to the learning in mathematics.        

Games would need to be structured and planned carefully with both a playfulness and 
exploratory aspect in learning before progressing to the process and mathematical contents. 
This is to ensure that pupils do not view games as another exercise to drill the pupils in the 
learning of mathematics. The openness of using game is also an asset in the skillful hands of 
the teachers or student game leader. By being observant in what the pupils are doing when 
they are playing, the teachers and student game leader can lead and extend the learning of 
the pupils in the midst of playing the games. Since games are all around us, so why not tap 
on them and let the pupils have fun and learn mathematics at the same time.

References 
Ainley, J. (1990). Playing games and learning mathematics. In L. P. Steffe & T. Wood (Eds.), 

Transforming children’s mathematics education: International perspectives (pp. 84-
91). Hillsdale, NJ: Erlbaum. 

Bright, G. W., Harvey, J. G., & Wheeler, M. M. (1985). Learning and mathematics games. 
Journal for Research in Mathematics Education. Monograph, Vol. 1

Civil, M. (2002). Everyday mathematics, mathematicians’ mathematics, and school 
mathematics: Can we bring them together? Everyday and academic mathematics in the 
classroom, (pp. 40-62). Reston, VA: National Council of Teachers of Mathematics.

Curriculum Planning and Development Division. (CPDD), (2006). Mathematics syllabus 
primary. Singapore: Ministry of Education. 

Harkness, S. S., & Lane, C. P. (2012). Game show mathematics: Specializing, conjecturing, 
generalizing, and convincing. The Journal of Mathematical Behaviour, 31, 163-173.

History of games timeline. (2001). Retrieved from http://historicgames.com/gamestimeline.
html

Shapiro, D. (2004). A brief history of gaming. The Games Journal. Retrieved from http://
www.thegamesjournal.com/articles/BriefHistory.shtml



Leigh Thompson, Luke Blythman

229

THE BEST WAY TO TEACH 
MATHEMATICS

Leigh Thompson

Bairnsdale Secondary College

Luke Blythman

Victoria University

There is no one best way to teach mathematics. This depends 
primarily on the learner, as it is their maths. The teacher needs 
to motivate, interest, know and value the learner. The learner’s 
talents need to be identified, nurtured and developed. Teachers 
generally have to provide this personalised learning within groups 
of students in a classroom. To maintain this working relationship, 
a variety of learning activities to develop understanding, rather 
than knowledge, are desirable to meet the various needs within a 
group of students.

Gain and Maintain Learner Interest 
“You can lead a horse to water, but you can’t make it drink.” You can try to teach, but it 

is the learners who determine if you succeed. It is not possible to teach uninterested or 
distracted students. An essential first step is to gain student interest and a harder second 
step is to maintain it. Depending upon the student cohort there are many ways to gain 
student interest.

The first impression of you from a class is often the most lasting. Those fortunate to 
have a name consisting only of the letters   and  are able to introduce 
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themselves by getting students to multiply the prime factors of their name turned upside 
down on a calculator e.g. multiply three by seven by thirteen cubed gives  which 
when turned upside down spells . Introductory comments that can gain your 
students’ attention may be along the lines of, “If you don’t follow what I’m teaching then 
tell me to lift my game. This way you’ll make me a better teacher” and “The best teachers are 
often sitting beside you. When your classmate says it is easy and you can’t follow, he is not 
implying you are dumb, but is indicating that once you get the hang of it, all is plain sailing”.

Stories about past students can provide encouragement. Two past students at a 
secondary school regularly got into trouble playing computer games when they were not 
supposed to. After students were asked, what they thought became of these past students, 
they were surprised to learn that these past students now part-own the largest computer 
games company in the world, Valve Software, and probably earn more in one year than 
a teacher does in their entire career. Students were informed that they were top maths 
students. Another past student, from the same small town as the other two, was Australia’s 
sole representative in the Men’s Mountain bike event at the Beijing and London Olympics. 
He was not a top maths student, indicating that it is not necessary to excel in maths to be 
successful in life.

Younger students can be fascinated by ‘magic’ tricks. A much used pack of Stuthards 
‘Stripmark’ Marked Cards (specially prepared marked cards for magic tricks) has proved 
invaluable. Students are impressed to see a deck of seemingly all red cards magically change 
to all black cards and later alternating red and black. When a selected card is replaced and 
the deck shuffled, they are amazed to see the teacher draw out their selected card without 
looking at it, then tell them what card it is. Explaining how these tricks are done enables the 
teacher to move onto other areas.

For older students Youtube has material to engage the entire class especially if a 
multimedia projector, reasonable speakers and a darkened classroom are available. Some 
with some mathematics relevance are: Mr Bean – Counting Sheep; Ma & Pa Kettle Math; 
Abbott And Costello 13×7 is 28; 1959 – Donald Duck – Donald in Mathmagic Land. Those 
with little or no mathematical relevance but some cycling relevance are: Inspired Bicycles 

– Danny MacAskill April 2009; Commercial – Greene King IPA Beer; Big Slip n Slide into 
water; Extreme Mountain Bike Crash with 170 kph; Bicycle Competition.

Cooperation and competition motivate some students. A multiplication sheet similar 
to that shown in Figure 1 is handed to each student. Students write their name on their 
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sheet. The top row continues across to 90 × 90, the first column continues down to 1 × 19 
and the ninth column tenth row has 81 × 99.

 

Figure 1. Multiplication Race

The last three rows are similar to Figure 2. Students are told there is a pattern in the answers; 
they are allowed to use calculators and can work together but each student must complete their 
own sheet. The teacher will provide an answer if asked. Products of mixed numbers must be 
written as mixed numbers and products of decimals must be written as decimals.

 

Figure 2. Last three rows of Multiplication Race

Experience has shown that virtually all students participate eagerly in this seemingly 
uninteresting task. Few, if any, discover or are aware of the numerical application of the 
difference of two squares. e.g.

 

Figure 3. Arithmetic application of the difference of two squares

Most learn that  and  if they did not know this beforehand, and, can 
generalize from   to  and  as well as gaining some 
tables practice. This activity also provides an opportunity to explain the operation of the 
fraction key,  , found on many school calculators.

Get to Know Your Students
Successful teaching requires that each student believes you care about them and their 

learning. It is important to identify and note specific skills, talents, qualities in each student 
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e.g. logical, reliable, neat, fast, accurate, cooperative, competitive, considerate, creative, 
original, persistent, intelligent, honest, helpful, etc. A teacher needs: 

the ability to really see their students, their potential for brilliance, the essence 
of their humanness through the somewhat obscuring clouds of sometimes 
distracting behaviour. A practised ability to see the good that may be dormant 
in a student, waiting for someone to give permission for that goodness to 
explode into existence, is the essence of a great teacher. (Beadle, 2011, p. 29).

Carefully correcting an individual student’s work with them beside you enables a 
teacher to get to know a student. However, this can be very time consuming and requires 
the rest of the class to be fairly quiet and meaningfully occupied. Although the teacher 
learns a lot about a student through correcting their work, the student learns little or 
nothing if not present. This is generally true, as most correction is done away from the class 
and often outside school. A lot of time can be saved and students can learn by having the 
whole class correct their work. Of course, some students may add or change answers but 
this generally does not matter if results are not recorded or critical to student assessment. 
Valuable learning opportunities often occur during tests. The teacher is sometimes faced 
with the dilemma; should they let a learning opportunity pass or should they assist and 
invalidate the test results. Assisting during a NAPLAN test is not advisable for those 
wishing to continue their teaching career but for class tests, assisting student learning may 
be the best course of action.

A worthwhile activity can be to go through these tests, especially 
the multiple choice questions suggesting alternative correct answers e.g. 

. If these suggestions 
appear far-fetched: consider a two part test result given as  when 
mathematically correct results are  or . The first result 
conveys more information, the second is meaningless in regards to the test and students 
find the last frustrating if they are unaware of the marks available in each section.

Engage Students
Euclid is said to have replied to King Ptolemy’s request for an easier way of learning 

mathematics that “there is no Royal Road to geometry” (HREF1). Maths teachers face an 
apparent daunting task in getting students to struggle hard to learn.

The conference theme, ‘It’s My Maths: Personalised Mathematics Learning’, hits the 
nail on the head when it comes to the best way to teach mathematics, especially since 
what works for one student does not necessarily work for another. However, providing 
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every student with an individualised learning program is generally not possible. Individual 
learning styles may be best addressed by a variety teaching styles and content.

Providing tasks on which all students can profitably participate is key to engaging every 
student. Problem solving tasks often meet this requirement. The following problem is suitable 
for a wide range of student abilities and ages from middle primary to senior secondary.

A farmer finds that emus have become mixed in with his sheep in a paddock.  He 
counts 30 heads and 100 legs. How many sheep are there in the paddock? Hint: For every 
emu head there are 2 legs whilst for every sheep head there are 4 legs.

Figure 4. Simultaneous equations

Figure 5. Simultaneous equations can be solved in a variety of ways
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Graph Method

 

Figure 6. Graph solution (requires some point plotting)

Matrix Method (detailed)

 

Figure 7. A matrix solution (grey working not necessary once method understood)
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TI-nspire CAS

 

Figure 8. CAS calculator solutions

These methods may be beyond many students however the following methods solve 
the problem.

Primary Schoolgirl Method
If all the sheep stood up on their back legs there would be 60 legs on the ground (2 legs 

for each head).  The extra 40 legs must be sheep front legs in the air, so there are 20 sheep 
(1 sheep for each pair of legs in the air).

Picture Method

 
Draw extra pairs of legs changing emus to sheep until 100 legs
30 emus, 0 sheep, 60 legs

Figure 9. All representational emus

 
10 emus, 20 sheep, 100 legs

Figure 10. Representational sheep and emus

 
10 emus, 20 sheep, 100 legs

Figure 11. Realistic sheep and emus

Whilst younger students might enjoy this problem and its ridiculousness, some older 
students may not appreciate the humour and see it as pointless and unrealistic. If the 
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problem is changed to: ‘Tickets to a school function are $2 for students and $4 for adults.  A 
total of 30 tickets are sold for $100.  How many adults have tickets to the function?’, then these 
students may see the problem as more meaningful. Creative students can be challenged 
to come up with different scenarios using the same and different numbers. Bicycles and 
tricycles is one such variation.

Varied Activities
The following activities are a sample designed to teach important concepts whilst 

engaging most if not all students.

Drawing
Most students enjoy drawing and this is a necessary skill in mathematics. A simple 

challenge to students is to draw a horizontal 10cm line, a 6cm line from the left end and an 
8cm line from the right end such that the lines form a triangle with no shortfall or overlap 
i.e. the sides of the triangle are 10cm, 6 cm and 8 cm. For older trade oriented students 
these measures can be given as 100mm, 60mm and 80mm. Many students cannot believe 
that with a glance, the teacher (who knows this forms a right angled triangle) can tell if a 
student has met this challenge successfully. The teacher often needs to prove this through 
use of a ruler. When one of the few students to use a drawing compass to perform this task, 
was asked how he knew to do this, he explained that his metalwork teacher had shown him. 
Many students learn more mathematics in practical subjects than in mathematics, making 
mathematics teachers with a practical subject method, invaluable.

 

Figure 12. Triangle constructed using drawing compass

By mistake, students were once asked to draw a triangle with sides of 10cm, 6cm and 
3cm. After realising that it could not be drawn students came up with their version of ‘any 
two sides of a triangle together are greater than the third’.
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3, 4, 5 Triangle
With the help of two others hold a measuring tape at 3 metres, 7 metres and 12 metres 

(Note 3m + 4m = 7m and 7m + 5m = 12m.  Hold the 12 metre mark and the start of the 
tape together and pull the tape taut.  The angle between the two shorter sides (i.e. at 3m) is 
a right angle. Make a larger right angled triangle by holding the tape at 6 metres, 14 metres 
and 24 metres. Knowing that a triangle, with sides in the ratio of 3 : 4 : 5, is a right angled 
triangle is a very useful practical skill. Further, knowing that a parallelogram with equal 
diagonals is a rectangle enables accurate right angles to be constructed in practice.

Proof of Pythagoras Theorem
To understand this proof students need to be familiar with area (the amount of surface) 

and realise that the area visible does not change as a shape is moved around on it.
Cut four identical right angled triangles and arrange them in a square as shown in 

Diagram 1 below.  The part of the square uncovered by the triangles is a square with side 
length the same as the hypotenuse length.  This area is equal to the hypotenuse length squared 
i.e. c2.  Keep the triangles within the square and move triangle 3 up and right as shown in 
Diagram 2, then move triangle 4 left as shown in Diagram 3, then move triangle 1 down as 
shown in Diagram 4. Now the part of the square uncovered by the triangles is two squares 
with side lengths the same as the two shorter sides.  This area is equal to the sum of the squares 
of these sides i.e. a2 + b2.  Since the amount of square uncovered is the same a2 + b2 = c 2.

 

Figure 13. Proof of Pythagoras Theorem
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The drawing compass

 

 Figure 14. Hexagonal ‘flowers’ constructed with compass and ruler

An often underutilised drawing instrument is the compass. Besides being useful in 
constructing perpendicular bisectors, angle bisectors and angles of 60°, 120°, 90°, 30° and 
45° it is relatively easy to construct hexagons (and hexagon flowers). Students readily see 
that the distance around the hexagons in Figure 14 is six times the radius. As the distance 
around the circle is a little longer, students can appreciate that .  
Now as  . As  , the formulas  become  
more meaningful.

 

Figure 15. Area of circle and ‘rectangle’ are equal

The area formula  makes sense when students cut the sectors out 
and rearrange them into a ‘rectangle’. For those who wish to compute  the series 

 usually suffices, even though it converges ever so slowly. 
Using a spreadsheet and averaging the oscillating values quickly gives an accurate value for  .

Table 1. Spreadsheet formula with inputs to obtain an accurate  approximation.

A B C D
1 1 1 4
2 =-A1 =B1+2 =C1+4*A2/B2 =(C1+C2)/2
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Only seven cells need to be filled in to use this series to evaluate an approximation for  
. Cell D2 can be copied to E3, F4, G5, H6, I7 and so on diagonally down to the left.  Row 

2 can be highlighted from cell A2 to cell D2 then filled down. Cells E3, F4, G5, H6, I7 and 
so on can be filled down.

Table 2. Spreadsheet normal view showing converging values for . 

A B C D E F G H I
1 1 1 4

2 -1 3 2.66667 3.33333

3 1 5 3.46667 3.06667 3.20000

4 -1 7 2.89524 3.18095 3.12381 3.16190

5 1 9 3.33968 3.11746 3.14921 3.13651 3.14921

6 -1 11 2.97605 3.15786 3.13766 3.14343 3.13997 3.14459

7 1 13 3.28374 3.12989 3.14388 3.14077 3.14210 3.14104 3.14281

8 -1 15 3.01707 3.15041 3.14015 3.14201 3.14139 3.14175 3.14139

9 1 17 3.25237 3.13472 3.14256 3.14136 3.14168 3.14154 3.14164

10 -1 19 3.04184 3.14710 3.14091 3.14174 3.14155 3.14162 3.14158

11 1 21 3.23232 3.13708 3.14209 3.14150 3.14162 3.14158 3.14160

12 -1 23 3.05840 3.14536 3.14122 3.14165 3.14158 3.14160 3.14159

Students can improve their pen and compass skills by drawing a circle with a compass, 
increasing the spread of the compass arms and stepping around the circle drawing circles to 
produce a design similar to that shown in Figure 16.

 

Figure 16. Pen and compass construction
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After doing this students should have little difficulty in constructing the regular 
polygons show in Figure 17 by increasing or decreasing the compass arm spread.

   

Figure 17. Regular polygons
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1, 2, 4, 8, 16, …
Dots are ‘randomly’ placed on a circle and connected to every other dot by a straight 

line so that no more than two straight lines pass though the same point. For a given number 
of dots, how many lines are there and what is the maximum number of regions enclosed 
within the circle?

 

Figure 18. Dots from 1 to 10 connected to every other dot on each circle

Table 3. The circled numbers can be left off for students to complete.

Number of dots (n) 1 2 3 4 5 6 7 8 9 10

Number of lines (l) 0 1 3 6 10 15 21 28 36 45

Maximum regions (r) 1 2 4 8 16 31 57 99 163 256

The number of lines is given by   (these are triangular numbers).

What initially appears to be simple doubling is much more complex with the maximum 

number of regions given by .

When older students are given the task of filling in Table 3, some leave it to the last 
moment writing 32, 64, 128, 256 in the blank spaces where the circled numbers are for the 
maximum number of regions. They usually change 256 to 512 assuming a mistake has been 
made in the tenth maximum number of regions. Most are able to correctly find the number 
of lines and hence only score 5 or 6 out of 10.

Students usually find that drawing a diagram is usually the quickest and easiest method 
for a small number of dots (less than 7).

The leftmost column in Table 4 gives the maximum number of regions, whilst, the 
second last column gives the number of dots. Each row is produced by adding the two 
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numbers immediately above (similar to Pascals Triangle). This can be easily implemented 
on a spreadsheet shown on the right half of Table 3. Cells A1 and B1 are filled with the 
number, highlighted and filled across to cell E1. Cell A2 is filled with the formula =A1+B1, 
highlighted and filled across to cell E2. Row 2 is highlighted from A2 to E2 then filled down.

Table 4. A numerical method for evaluating the maximum number of regions. 

If the number of dots is large then many additions are necessary. Less computation 
is required in this case using the formula. For many students this provides their first 
appreciation of the ‘power’ of algebra.

Algebra
Asking the question, “How far is it around the earth?” followed by the comment, “You 

stand on it every day”, usually elicits a wide range of responses. This provides the opportunity 
to explain that the metre was defined a one ten millionth of the distance from the equator 
to the North Pole, so a quarter of the way around the earth is 10 000 000 metres or  
10 000 kilometres. Hence 40 000km is the distance around the earth (assuming great circle 
circumference). Subsequently, holding up a sheet of A4 paper and asking, “What has this 
to do with the size of the earth?” may be answered by a different answer than, “Nothing”. To 
enlarge or reduce a page on a photocopier generally requires the photocopy paper to be the 
same shape as the original page. What are the dimensions of a sheet of paper of area 1m2  
which when folded in half along its long side is the same shape?

Let the length and width of the sheet of paper be l and w respectively
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Figure 19. Application of algebra to paper shape

The dimensions are approximately 1.189 m × 0.841 m
This size is known as A0.
If the A0 sheet is cut in half along its long side, the 2 sheets size is known as A1.
If the A1 sheets are cut in half along their long sides, the   4 sheets size is A2.
If the A2 sheets are cut in half along their long sides, the   8 sheets size is A3.
If the A3 sheets are cut in half along their long sides, the 16 sheets size is A4.
The dimensions of an A4 sheet is 297mm × 210mm
The B series has the same shape as the A series, the longer side of B0 being .
i.e. B0 has dimensions  (approximately 1.414m × 1.000m). Similarly C0 

has dimensions  
(approx. 1.297m × 0.917m).

Proofs, patterns and definitions
The following algebraic ‘proofs’ show the importance of the order of operations, 

division by zero and introduction of extraneous results by squaring and the need to consider 
both positive and negative square roots.

Proof that a full time worker doesn’t work at all
Assume 366 days per year. Full time worker only works 8 hours a day i.e. a third of a day. 

One third of 366 is 122 days, so a full time worker only works 122 days less weekends and 
holidays. There are 52 weekends in most years so a full time worker only works 122 days, less 
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104 days which is 18 days. The full time worker has at least 3 weeks annual holidays. 3 weeks at 
5 days per week (as weekends have earlier been accounted for) is 15 days, so a full time worker 
only works for 3 days (18 days less 15 days). But a full time worker has Good Friday, Christmas 
Day and Boxing Day off so full time worker works 3 days less 3 days which is zero days!

Algebraic Proof that 2 = 1

 

Arithmetic Proof that 2 = 1

 

Proof that an Elephant weighs the same as an Ant

 

Hence an elephants weigh the same as an ant!
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Indices
Despite knowing that 23 = 8, 22 = 4 and 21 = 2 most students are inclined to answer that 

20 = 0. This is understandable for those who think that 23 = 6 and this misunderstanding 
can be overcome by showing that 23 = 2 × 2 × 2 but 20 is not so easily understood. 
Additionally students are inclined to write 2-1 = -2. The patterns show here help students 
see that 20 = 1, 2-1 = , etc. 

 

Writing ten raised to negative powers as decimals with zero preceding the decimal 
point, makes it straightforward for students to remember how to write the basic numeral 
as the number of zeroes matches the index e.g. 10-3 = 0.001 which has 3 zeroes just as  
103 = 1000 also has 3 zeroes.

Prime Number Pattern
The following method appears to be a novel and predictable way to produce successive 

prime numbers. Starting with 1 and 3, obtain successive terms by adding the two preceding 
numbers together. This forms the Lucas Sequence. Take one from each number in the 
Sequence. If the term number is a factor of this number, circle the term number as shown 
in the table below. The circled numbers are all prime numbers. This method gives all the 
126 prime numbers up to and including 701.

Table 4. The first 6 prime numbers obtained and 14 terms evaluated

Term Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lucas Sequence 1 3 4 7 11 18 29 47 76 123 199 322 521 843
Less One 0 2 3 6 10 17 28 46 75 122 198 321 520 842
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The 705th term of the Lucas Sequence less one is 2 169 133 972 532 938 006 110 694 
904 080 729 167 368 737 086 736 963 884 235 248 637 362 562 310 877 666 927 155 
150 078 519 441 454 973 795 318 130 267 004 238 028 943 442 676 926 535 761 270 
635 which is divisible by 705. 705 is clearly not prime. This remains the longest simple 

‘pattern’ we know of, which ‘fails’.

What does 0 ÷ 0 equal?
Since 0 ÷ a = 0  for all real values of  a other than a = 0 it would seem ‘reasonable’ that  

0 ÷ 0 = 0.
Since a ÷ a = 1 for all real values of a other than a = 0 it would seem ‘reasonable’ that 

0 ÷ 0 = 1 
In a sequence where each term is the sum of the two preceding terms, where a is the 

first term and b is the second term, then for all real values of a and b other than a = 0,  
b = 0 the ratio of each term to the preceding term approaches the Golden Ratio   so 
it would seem ‘reasonable’ that 0 ÷ 0 = .

The ratio of the circumference to the diameter of any circle is pi. As the circle becomes 
smaller and smaller, the circumference and diameter both approach zero, so it would seem 

‘reasonable’ that  0 ÷ 0 = 
As |a|  approaches zero |b ÷ a| becomes larger as for all real non-zero values of a and b. 

Hence it would seem ‘reasonable’ that  0 ÷ 0 = .
As x × 0 = 0, where x is any real number, x = 0 ÷ 0 so it would seem ‘reasonable’ that 

0 ÷ 0 = any real number.
Clearly 0 ÷ 0 = is undefined and this provides a suitable lead-in to differential calculus.

Definitions
Asking students “What is an angle?” often reveals a lack of knowledge. Getting students 

to circle the largest angle in Figure 20 is informative. Except for the right angle, all acute 
angles are the same so the last (reflex) angle is largest.

  

Figure 20. Circle the largest angle

When an angle is defined as a measure of how open a book (or bird’s beak or hinged 
door) is, students realise that the size of the arms and the radius of the angle arc are 
inconsequential to the size of the angle, although the latter is usually larger for small angles.
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Figure 21. Which book is most open?

An accident investigator may be interested in describing how a car, which ends up 
facing the direction in which it was heading after a spin, got there. The car may have spun 
either clockwise or anti-clockwise (viewed from above). It may also have spun any number 
of complete turns plus a half turn. To describe this using angles requires that the angle 
definition be extended beyond the ‘openness’ of a book to encompass direction (clockwise 
or anti-clockwise) and angles greater in magnitude than 360°.

“Why are there 360 degrees in a circle why not 400?” is a rhetorical question worth 
exploring. A suitable answer is because there are about 360 days in a year (a star viewed at 
the same time on successive nights will have moved nearly one degree. Additional reasons 
are that 360 has a lot a factors and it is relatively easy to divide a circle into 6 equal pieces. 
There are 400 gradians in a circle and pi radii. The more mathematically useful measure is 
radians which can be defined as the distance around the relevant arc of a unit circle (circle 
with unit radius). As the distance around a semi-circle of unit radius is  then  and 180° 
are equivalent.

Area may be defined as the amount of surface. Getting students to cut a circle and 
square of equal area out of uniform material is a useful activity. Discussion of Figure 22 as 
to the area of the outer circle and inner circle in relation to the square, and, the area of the 
outer square and inner square in relation to the circle beforehand helps. This activity can 
be assessed by weighing each circle and square and expressing the lighter as a percentage 
of the larger. A significant number of students mistakenly think that shapes with the same 
perimeter have the same area.

 

Figure 22. Squaring the circle
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Teach for understanding

Directed Numbers
Rote learning ‘two negatives give a positive’ leads to confusion e.g. -3 – 1. By 

distinguishing the actions of addition and subtraction from the directions of positive and 
negative and using their italic equivalents, understanding is achieved.

Table 5. Subtraction of negative numbers using number line
Action Direction

add + step forward positive + face right
subtract – step backward negative - face left

 

Figure 23. Subtracting negatives

Sum of Interior Angles in a Triangle
When asked for the sum of the interior angles of a triangle many students are able to 

reply correctly, 180°. The following often indicates whether or not the students understand 
this. A triangle, has been torn into three pieces (Figure 24).

 

Figure 24. Interior angles of a triangle

The pieces are re-arranged with the vertices (corners) touching and the edges aligned 
(no overlap). Which one of the following shows how it could look or would the edges not 
fit together as shown but would have gaps between them?
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Figure 25. Combining the interior angles of a triangle

It is a simple matter to cut out any triangle with scissors and paper and tear it as in 
Figure 24 and combine the pieces as in the second picture in Figure 25. Some students 
who know that the interior angles of a triangle add to 180° fail to select the second picture 
indicating a lack of understanding.

Expansion and Factorisation
These operations are the inverse of one another. Each term in the first parentheses is 

multiplied by all the second parentheses as shown in Figure 26.

 

Figure 26. Expansion using the distributive law

When factorising 6x2 – 19x – 7, how is +2x – 21x chosen to replace -19x? Computing 
the outer product i.e. 6x2 × -7 = -42x2  then listing the pairs of factors until a pair which add 
to -19x, is how. If no pair can be found, the quadratic trinomial is not able to be factorised 
over the integers.

e.g.  . 
Clearly, the second pair meet this requirement

 

Figure 27. Factorisation - reverse of distributive law
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Measuring
Being able to correctly read a measure off a scale is a mathematical life skill.

 

Figure 28. What reading is the arrow pointing to?

It is quite revealing to see how few final year students, keen to pursue a trade career, are 
unable to correctly find the measurement required in Figure 29.

 

Figure 29. This tape is in three consecutive pieces. Find and mark 3·065m

Scissors and Paper
A significant number of students are ‘good with their hands’. Some of these students 

excel in scissor and paper (cardboard) tasks. Constructing the five Platonic Solids from 
their nets can be a rewarding and learning experience for them. A year calendar can be 
made using the dodecahedron with each of the twelve months appearing on each of the 
twelve faces.

These solids can be used to check or establish Euler’s Rule v + f = e + 2  where v is the 
number of vertices, f is the number of faces and e is the number of edges.

Figure 30. Platonic solid nets
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Figure 31. Platonic solids

Isometric Drawing
Many mathematically disengaged students spend much of their class time drawing. 

Getting them to participate in mathematics activities that involve drawing is considerably 
easier than getting them to engage in other mathematics activities. Isometric sketching on 

“dotty” paper is just one activity. This readily leads to discussions about volume, surface area 
as well as Euler’s Rule.

 

Figure 32. Isometric sketch and 3D reflection on ‘dotty’ paper
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Point plotting
Constructing a drawing by plotting Cartesian points and connecting the dots with 

line segments is an activity enjoyed by junior secondary students. It is easily checked by 
holding students plot over a correct plot against a window.

 

Figure 33. Connected line segments between plotted points. (adapted from Boyle 1971)

References
Beadle, P., (2011). Five top tips for beginning teachers, Inside Teaching – the Professional 

Journal of the Australasian Teacher Regulatory Authorities ATRA, 2(1), 28. (ISSN 1838-
8868, Australian Council for Educational Research – ACER Press, Retrieved from 
http://www.vit.vic.edu.au/forms/publications/Pages/InsideTeaching.aspx)

Boyle, P. J. (1971). Graph gallery. Palo Alto, CA: Creative Publications Inc.
HREF1: A metaphorical “Royal Road” in famous quotations. (2012). Retrieved from 

http://en.wikipedia.org/wiki/Royal_Road



John Kermond

253

AN AMAZING THEOREM

John Kermond

John Monash Science School

Marden’s theorem gives a geometric relationship between the 
roots of a cubic polynomial and the roots of its derivative. It shows 
that the connection between a cubic polynomial and its derivative 
is perfectly mirrored by the connection between an ellipse and its 
foci. In this paper Marden’s theorem is stated and illustrated with 
several detailed examples. A brief history of the theorem is also 
given.

Marden’s Theorem
A cubic polynomial with complex coefficients has three roots in the complex plane and 

in general these roots form a triangle. The Gauss-Lucas Theorem (Needham 1998 p259, 
Van Vleck 1929, HREF1) says that the roots of the derivative of a cubic polynomial lie 
within this triangle. The result popularly known as Marden’s Theorem is a sharp refinement 
of this. It gives an amazing geometric relationship between the roots of a cubic polynomial 
and those of its derivative, showing that the connection between a cubic polynomial and its 
derivative is perfectly mirrored by the connection between an ellipse and its foci.

In geometry, the Steiner inellipse of a triangle is the unique ellipse inscribed in the 
triangle and tangent to the sides at their midpoints (Minda and Phelps 2008, HREF2, 
HREF3). Marden’s Theorem states (Kalman 2008, Kalman 2009 p42, HREF4):

Let p(z) be a cubic polynomial with complex coefficients and whose roots z1, z2, z3 are non-
collinear points in the complex plane. Let t be the triangle with vertices at  z1, z2, z3. Then the 
roots of  p’(z) are the foci of the Steiner inellipse of t.

Furthermore, the root of the double derivative p’’(z) is located at both the centre of the 
Steiner inellipse of t and the centroid of t (Kalman 2008, Kalman 2009 p51, HREF4). 
This follows from the fact “that the average of the roots of a polynomial is the same as the 
average of the roots of the derivative.” (Kalman 2009 p50, HREF4) and:



An Amazing Theorem

254

•	 The coordinates of the centroid of a triangle are the arithmetic means of the 
coordinates of the three vertices (HREF5).

•	 The centre of an ellipse lies halfway between its foci.

Investigating Marden’s Theorem
To investigate Marden’s Theorem it is natural to first choose three complex non-

collinear points {z1, z2, z3} to be the vertices of a triangle ∆ z1, z2, z3 and then interpolate 
these points with the (monic) cubic polynomial f(z)=(z-z1)(z-z2)(z-z3). The roots of the 
derivative of  f(z) are then found and from these foci and the midpoints of the sides of  ∆ z1, 

z2, z3 the equation of the inscribed ellipse can be found. Note however, that “…. if the initial 
three points are taken as arbitrary complex points, the expressions that arise [can] become 
… large and cumbersome.” (Lopez 2010).

Example 1
Consider . The roots of  ,  

Figure 1. (a) Argand diagram showing the roots of  f(z)=z3+3z-4. (b) Steiner inellipse of   
∆aBc showing its foci at z=i and z=-i and centre at z=0.

and , labeled a, B and c respectively in Figure 1(a). Let ∆aBc be the 

triangle with vertices at these roots (see Figure 1(b)).
f ’(z)=3z2 + 3and so the roots of f ’(z) are z=i and z=-i. These roots are the foci of the 

Steiner inellipse e of ∆aBc  (see Figure 1(b)).
f ’’(z)=6z and so the root of f ’’(z) is z=0. Note that it lies halfway between the roots 

of f ’(z) and is also the average of the three roots of f(z). This root is the centre of e and the 
centroid of ∆aBc.
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Finding the Equation of the Steiner Inellipse
Marden’s theorem says the following about E:
•	  The foci are at z=i and z=-i.
•	  The centre is at z=0 (that is, at the point (0,0)).
•	  The midpoints of each side of ∆aBc lie on e:

Midpoint of aB: .

Midpoint of  ac: .

Midpoint of  Bc: .

•	  Each side of ∆aBc is tangent to e at the midpoint. Therefore the gradient of e 
at the midpoints of aB and ac is equal to the gradient of aB and ac  
respectively (note that mBc is undefined): 
 

 

 
 .

Cartesian equation
Since the foci of e are at z=i and z=-i it follows that the major axis of e is parallel to 

the imaginary axis. Therefore E is not rotated and so its equation can be found using either 
of the following two models:

•	     …. (1)

•	   .
Substituting the centre (0,0)  into equation (1) gives the refined model

       …. (2)

Substituting  into equation (2) and re-arranging gives . Substituting 
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either of the other midpoints into equation (2) and re-arranging gives  from 

which it follows that . Therefore the cartesian equation of e is

    …. (3)

Implicitly differentiating equation (3) gives   from which it is readily 

verified that e is tangent to ∆aBc at the midpoint of each side.

Complex relation

The complex relation

 …. (4)

defines an ellipse with foci at z=z1 and z=z2 and a major axis of length equal to k 

(Kermond 2004).

Substituting the foci at z=i and z=-i into equation (4) gives the refined model

 .   …. (5)

Substituting the midpoint    of Bc into equation (5) gives  

implying  .

Therefore e is defined by the complex relation

.   …. (6)

It is readily verified that equation (6) reduces to equation (3) (subject to the redundant 

restriction   by substituting z=x+iy and simplifying. This confirms that the foci of 

equation (3) are indeed the roots of  f ’(z).

Example 2

Consider . The roots of  f(z) are  and 

, labeled a, B and c respectively in Figure 2(a).
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Figure 2. (a) Argand diagram showing the roots of  f(z)=z3+i.  (b) The Steiner inellipse of  
∆aBc is a circle with foci coinciding at z=0.

These roots can also be found using de Moivre’s Theorem since they are the cube roots 
of -i.

 f ’(z)= 3z2 and so the (repeated) roots of  f ’(z) are z=0 and z=0.
f ’’(z)=6z  and so the root of  f ’’(z) is z=0.

Finding the Equation of the Steiner Inellipse
Since the foci coincide (at z=0), the Steiner inellipse e of ∆aBc is a circle (see Figure 

2(b)), which is the degenerate case of an ellipse. This also follows from symmetry since 
∆aBc is equilateral.

The complex relation defining a circle with centre at z=z1  and radius r is
.   …. (7)

Substituting the centre z=0 into equation (7) gives the refined model
 .   …. (8)

Substituting the midpoint  of Bc into equation (8) gives . 

Therefore e is defined by the complex relation  

implying  .

Example 3
Consider . It can be 

confirmed that z=3+i is a root. Therefore z-3-1 is a linear factor and from polynomial 
long division it is found that z2-(8+12i)z-28+54i is a quadratic factor. It follows from the 
quadratic formula that the roots of  .

There are two different ways of finding  in rectangular form:
Option 1: Let , where  . Then (u+iv)2=8-6i
implying (u2-v2)+2uvi = 8-6i
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implying u2-v2 = 8 and uv = -3 
implying u = 3 and v = -1 or u = -3  and v = 1.
Option 2: Let . Then
   where  and .

Therefore  and 

implying  .

Substituting m=0 and m=1 gives two distinct values:

 where   .

It follows from   that . Using the double angle formula 

 it therefore follows that 
 

   and    

implying  .
Therefore    or 1+7i  and so the roots of f(z) are z=3+i, 

z=7+5i and z=1+7i, labeled a, B and c respectively in Figure 3(a). Let   be the triangle 
with vertices at these roots (see Figure 3(b)).

Figure 3. (a) Argand diagram showing the roots of  f(z)=z3 - (11+13i)z2 +138 - 134i. (b) 
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Steiner inellipse of  ∆aBc showing its foci at   and z=3+5i.

f ’(z)=3z2 - 2(11+13i)z - 16 = 98i and so the roots of f(z) are   and  z=3 
+ 5i. These roots are the foci of the Steiner inellipse e of  ∆aBc (see Figure 3(b)).

f ’’(z) = 6z-2(11+13i) and so the root of f ’’(z) is . Note that it lies halfway 

between the roots of f ’(z) and is also the average of the three roots of f(z). This root is the 
centre of e and the centroid of ∆aBc.

Finding the Equation of the Steiner Inellipse

Cartesian equation
Since the foci of e are located at  and z = 3 + 5i it follows that the major 

axis of e lies on a diagonal line. Therefore e is rotated relative to the real and imaginary axes 
and so its equation has the general form

ax2 + by2 + cxy + dx + ey = 1  …. (9)
where the xy-term causes the rotation (Salas and Hille 1978 p391).
Substituting the midpoints of each side of ∆aBc into equation (9) gives:
•	 Midpoint (5, 3) of aB:
 25a + 9b + 15c + 5d + 3e = 1  …. (10a)
•	 Midpoint (2, 4) of ac:
 4a + 16b + 8c + 2d + 4e=1  …. (10b)
•	  Midpoint (4, 6) of  Bc:
 16a + 36b + 24c + 4d + 6e = 1  …. (10c)
Implicitly differentiating equation (9) gives

  …. (11)

Substituting the midpoints and gradients of each side of  ∆aBc into equation (11) 
gives:

•	  Midpoint (5, 3) and gradient maB = 1:
 10a + 6b + 8c + d + e = 0  …. (12a)
•	 Midpoint (2, 4) and gradient mac = 1:
 4a - 24b - 2c -+ d - 3e = 0  …. (12b)

•	  Midpoint *(4, 6) and gradient  

 24a - 12b + 14c + 3d - e = 0  …. (12c)
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Solving any five of equations (10a), (10b), (10c), (12a), (12b) and (12c) simultaneously 

gives 

Substituting these values into equation (9) and re-arranging gives
 24a - 12b + 14c + 3d - e = 0  …. (13)
A CAS calculator can be used to draw the graph of e if equation (13) is treated as a 

quadratic equation in y and re-written in the form

  …. (14)

Implicitly differentiating equation (13) and re-arranging gives 

, from which it follows that the tangent to e is a vertical line when 7y + x - 34 = 0. The 
coordinates on e at which the tangent is a vertical line can be found by solving 7y + x - 34 
= 0 and equation (13) simultaneously:

 .

It follows that the domain of e is . This domain can be 

confirmed by solving  , where - 3x2 + 22x - 31 is the argument of the 
square root appearing in equation (14).

The major axis of e lies on the diagonal line y = -x + 8. This line is found by noting that 

it must pass through the foci    and 3 + 5i and shows that e is rotated by 450 relative 
to the real and imaginary axes.

The coordinates of the vertices of e can be found by solving y = -x + 8 and equation 

(13) simultaneously:  and (5, 3).

Complex relation
Substituting the foci at  into equation (4) gives the 

refined model
 …. (15)

Substituting the midpoint z = 2 + 4i of ac into equation (15) gives
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 implying  .

Therefore e is defined by the complex relation

 …. (16)

It can be verified that equation (16) reduces to equation (13) (subject to the redundant 
restriction 3y - 3x + 14 > 0 ) by substituting  z = x + iy and simplifying. This confirms that 
the foci of equation (13) are indeed the roots of  f ’(z).

Brief History
The result known as Marden’s Theorem has been widely popularised by Dan Kalman 

(Kalman 2008, Kalman 2009 p42, HREF4), who named the theorem after Morris Marden 
because he first read it in the 1966 book Geometry and Polynomials by Marden (Marden 
1966). Marden attributes the theorem to Jörg Siebeck, citing a paper from 1864 that 
contains a more general theorem:

The zeros of the function   (m1, m2, m3, > 0) where z1. z2, 

z3 are distinct non-collinear points in the complex plane are the foci of the ellipse which touches 
the line segments [z2,z3],[z3,z1],[z1,z2] at those three points that divide these line segments in 

ratios  respectively.

Marden’s Theorem is a simple corollary: If p(z) = (z - z1)(z - z2)(z-z3) then
and so, with m1 = m2 = m3 = 1 , the ellipse furnished by Siebeck’s Theorem is the 

Steiner inellipse.
Various versions of Marden’s Theorem, such as the Bôcher-Grace Theorem (Clifford 

and Lachance 2009), have appeared since 1864 (Marden 1966). In 1920 Ben Linfield gave 
a statement of the theorem in a more general form (Linfield 1920):
Let p be a complex polynomial of the form p(z) = (z - z1)i(z - z2)j(z-z3)k whose degree i + j + k 
may be larger than 3. Let t be the triangle formed by the roots of p. Then the roots of   occur at 

the multiple roots of p and at the foci of an ellipse whose points of tangency to t divide its sides 
in the ratios .

The Bôcher-Grace Theorem has been recently generalised to polygons (Clifford and 
Lachance 2009):
Let p be a complex polynomial of degree n and let its critical points take the form   
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where  k = 1, 2,... n - 1,  and . Then there is an inscribed ellipse interpolating 

the midpoints of the convex n-gon formed by the roots of p and the foci of this ellipse are the two 
most extreme critical points of  .
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DISCUSSION OF BROADER ISSUES 
IN TEACHING ABOUT THE 
MATHEMATICS OF GAMBLING: 
PAST, PRESENT AND FUTURE

Donald Smith

Victoria University

Teaching about gambling to secondary students in mathematics 
classes is fraught with difficulty: It is not in the curriculum, 
and left out of text books. It is opposed by parents. Introducing 
commercial gambling games grooms students. It has been done 
badly in the past. Individual teachers do it in an ad-hoc way. 
Probability concepts are hard to understand. Government 
sponsored curriculum interventions get it wrong. The Productivity 
Commission is against it because it has not worked... Let’s work 
through a range of these issues: What mathematics gambling 
curricula have been available? How has gambling been used in 
class? What have been some of the public responses to proposals 
to teach about gambling? What restrictions do you face in class 
planning? Why have Government sponsored gambling teaching 
materials been so bad? What are mathematics teachers’ social 
responsibilities?

Youth, Probability Knowledge and Commercial Gambling
Commercial gambling has become a major growth industry in many parts of the world. 

Over the past few decades there has been unprecedented expansion in gambling availability, 
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participation and expenditure. Growth has been particularly strong in jurisdictions 
where electronic gambling machines (EGMs) and large urban casinos have been widely 
introduced, for example Canada, the United States, Australia, New Zealand and South 
Africa. Other countries, including the United Kingdom, are currently undergoing 
this rapidly expansionary phase. And of course the internet provides endless instant 
opportunities to gamble, increasingly on telephones. The prevalence of problem gambling 
among youth is around 5%, warranting our educational efforts. Earlier work (Smith, 2003) 
linking poor probability knowledge to illusions of control, well known as a correlate of 
problem gambling, made me aware, and disappointed, that the lack of understanding of 
probability concepts was, and is, widespread, among gamblers and non-gamblers; welfare 
advisors, psychologists, gambling researchers, even mathematics teachers! 

Given the ubiquity of gambling opportunities, it seems obvious that students should 
have specific understanding of the principles by which gambling works for its owners, 
denuding the players of funds over time. Students need practical direct education about 
this, rather than ad-hoc gambling examples from individual teachers, or general statistics 
curricula, which have purposes other than warning about commercial gambling, so that 
the important lessons about gambling are not learnt. In the broader context of problem 
gambling policy, it is time for less biological and psychological interpretation of excessive 
gamblers, and a little more rationality, clearly demonstrated to them, preferably well before 
they take up the pokies curse. Most people don’t need preventative education to cut down 
the risk of them becoming excessive gamblers, but many who gamble don’t understand why 
they are going to lose. It is time for mathematics teachers to clearly end that confusion.

The call for gambling education has been growing. In submissions to the Productivity 
Commission inquiry into gambling in Australia even the gambling industry offered support: 
“A finding and a recommendation which encourages governments to work with stakeholders 
to develop quality responsible gambling education programs built on the best ideas ...is 
now necessary.” Australasian Gaming Council (2009, p. 3) Recently the independent MP 
Andrew Wilkie, who has been a leader in seeking to curtail EGM gambling in Australia, 
said gambling education was more important than ever. He noted that fewer than one in 
ten recent study participants said they had encountered gambling education at school (The 
Mercury, 2012). “That is a very alarming finding and that is important evidence for some 
sort of educational awareness being included in the school curriculum,” he said. But exactly 
what should be taught has been quite unclear. Past efforts to teach about the mathematics 
of gambling at secondary school level have been spasmodic. They have also been variously 
partial, piecemeal, inaccurate, cumbersome or buried in irrelevancies.
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Past attempts: Good intentions, but poor mathematics
A discursive, rather than exhaustive review of some teaching efforts about gambling 

follows. Around the world, mathematics teachers occasionally address the topic, often on 
their own initiative, sometimes to use gambling examples to illustrate probability concepts, 
sometimes to teach directly about the nature of gambling. Looking at what has been 
included in curricula by mathematics educators, or advocated by people with an interest 
in gambling issues, should give us an understanding of the limits and inadequacies of some 
of those teaching programs, and set some of the parameters for the teaching we need to 
undertake.

Various people have published school level gambling curricula with some mathematics 
content. Howard Shaffer, a leading addiction theorist, from Harvard Medical School, 
mandated a mathematics course to teach about gambling (Hall et al, 2001). A problem 
with it was that it only addressed independence and randomness, and so, helps understand 
why you did or did not win on your last attempt, but says nothing at all about why you 
are going to lose overall. Later he published advice to parents about speaking with their 
children about gambling, urging: “The next time you see a news report about a lottery ticket 
winner or a big winner at a casino, take the opportunity to talk to your kids about the reality of 
chance. Young people need to learn that winning is unlikely. Teaching your children about the 
odds will give them the tools to make better decisions when faced with peer pressure to gamble.” 
(Shaffer, 2008) However, what teaching about the odds actually involves remained unstated 
and unexplained.

Gambling Education: Some strategies for South Australian schools (Glass, 2002) 
reviewed available education attempts, and led to development of some school resources that 
had almost no mathematics content. Going into the Victorian State election in 2002, the 
Australian Labor Party had a policy of improving school education in relation to gambling. 
Their aim was to “develop a school program and curriculum to educate young people about 
problem gambling and the risks associated with gambling” (ALP, 2002). In the next four-year 
term, they did try to introduce curricula discussing gambling as risky behaviour, but did 
nothing with regard to mathematics teaching, and did little worthwhile in their following 
term. A policy officer inexperienced in mathematics education developed some exercises 
for adult literacy teaching, where the audience was very small, and not particularly afflicted 
with gambling problems. Limited and poor mathematics materials were also released as 
sections in a series of teaching books about gambling covering non-mathematical topics.
(Victoria, 2006) Typical of Government educational attempts in this area, such as that in 
Queensland (2006), there was little appropriate mathematics, and overly large curricula. 
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Such curricula don’t get to the point effectively, have marginally relevant material to wade 
through, and are too big to be widely adopted by teachers who already have busy teaching 
programs and crowded curricula. The Australasian Gaming Council, i.e. the industry, had 
a more positive appreciation of the Queensland initiative, calling it “a well-developed 
responsible gambling education program…available to all schools. The gambling industry, 
together with educators and community representatives, was consulted in the development 
of the program, which was distributed through the former Office of Gaming and Racing” 
(2009, p. 84).

The main points about mathematics knowledge as applied to gambling have not 
often been effectively taught. It is hardly surprising that the Productivity Commission 
called for a moratorium on all teaching about gambling, recommending “Given the risk 
of adverse outcomes, governments should not extend or renew school-based gambling 
education programs without first assessing the impacts of existing programs” (Productivity 
Commission, 2010, 9.20). Earlier Freethy (2003) had summed up the situation in 
Australia: “When government positions on this issue are examined, a range of policy 
documents refer to the need for prevention and early intervention. Unfortunately, that is 
all they do. Most are unable to specify what this means. Some are honest enough to say this 
is an area that requires urgent attention.” State governments collect large revenues from 
gambling, and feel obliged to spend a lot appearing to do something about the problems 
that gambling causes, but vested interests dominate the allocation and spending of these 
funds. Appropriate mathematics curricula have been on offer for some years now, but have 
not been taken up. In Britain the Gambling Commission, Review of Research, Education 
and Treatment, Final report and recommendations (2008) concluded: “Research and 
education are under-resourced in comparison to treatment; a strategic framework is lacking 
in relation to the identification of ‘problem-solving’ research linked to ... the development 
of priorities for preventive education programmes and initiatives. There has been little 
evaluation of existing education initiatives.”

As in all areas of gambling research, Canadians have done some of the leading work 
on improved school education. A program from Saskatchewan Health (2006) offers basic 
mathematics teaching for gambling in its “What are the odds?” computer game, aimed at 
children in grades 6 to 9. It is a comprehensive resource, which includes teaching notes, 
clearly defined learning objectives, and student activities that are not heavily writing and 
reading based. Gambler’s Help Southern, in Melbourne, have engaged in practical hands 
on teaching about independence and randomness in mock gambling situations. In Britain, 
Tacade (2011) have also produced good materials.
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School Education Today
Australian experts on high school mathematics education, Goos, Stillman, and Vale 

(2007) suggest that “Even in Secondary school, students should be encouraged to work with 
manipulatives or concrete materials to assist them in building intuitions about probability 
and data. Collecting their own data and working with simulations may also help with 
personal beliefs about randomness that run counter to statistical principles” (p 259). Even 
so, in their celebrated Australian textbook Teaching Secondary School Mathematics, with 
the teaching of mathematical content divided into six areas, including a large chapter on 
“teaching and learning chance and data”, in the whole discussion, indeed in the whole book, 
there is no reference to a gambling context. Indeed, when mathematics teachers have given 
gambling examples when teaching probability, it has often been to teach the principles of 
probability generally, not directed to why you will lose on commercial chance games, not 
directed to, what is for us here, the relevant application of probability knowledge. That is, 
teachers have occasionally used gambling to teach about probability theory, but have rarely 
used probability theory to explain gambling outcomes.

Curriculum Practices in Teaching the Mathematics of Gambling
It is worth reviewing a typical bad example of mathematics teaching around 

gambling. When presenting suggested teaching about gambling at a small Adults Learning 
Mathematics conference in Belfast in 2006, there was an excellent library containing many 
books on mathematics at the house of my fine hosts. This was one: Statistics: an introduction 
by Alan Graham (1994). On page 207, it read “if a horse is given odds of 5:1 this means 
that given six chances, it would be expected to win once and lose the other five times.” There 
are two things wrong with this. Firstly, to describe the long term expectation as occurring 
over only 6 times is an ambiguous oversimplification. I guess, and you could work it out, 
that from six attempts the horse would be expected to win either once or twice or not at all. 
Winning once is not the expectation, it is the average expectation. More importantly, the 
quoted statement fails to recognise the difference between the horse’s chances (the actual 
odds) and the betting odds which are being offered by the bookmaker. Why be so petty 
about this? Because it is the whole crux of why people will lose their money in commercial 
gambling. Before we explain that further, let us look at how the author used his horse race 
information for student exercises. He gratuitously introduced the students to gambling, 
asking them to calculate how much they would get from winning bets on each of three 
horses. Nevermind losing, which would have been the more likely prospect.

Below is an example of what could have been done instead, where the emphasis is not 



Donald Smith

269

on what we might, possibly, win, but on what we will, more definitely, lose:

Table 1
Horses’ Betting Odds Expressed as Fractions 

Horse 1 Horse 2 Horse 3 Horse 4 Horse 5 Horse 6 Horse 7 Horse 8

odds 9:4 3:1 5:1 7:1 10:1 12:1 14:1 16:1

fraction 4/13 1/4 1/6 1/8 1/11 1/13 1/15 1/17

decimal .3077 .25 .1667 .125 .0909 .0769 .0667 .0588

Sum of Probabilities = 1.1427   In a mathematically fair game this would add to one, 
as the total probability for all possible outcomes is 1, by definition. Take the multiplicative 
inverse = 0.87512   Subtract from 1 - 0.87512 = 0.12488 = Bookie’s margin; an expected 
rate of loss by bettors of 12.5% or one-eighth of their total bets.

This example from a textbook has the additional disadvantage of actually having a lower 
house margin than any horse racing odds that I have ever previously examined. Twenty to 
30% or even higher, is a much more common margin in actual quoted bookmaker odds at 
any particular time. Of course the bookmaker’s actual margin is likely to be a little lower as 
the prices move and the punter hopefully, from their point of view, bets at the best price. 
Furthermore, the preponderance of betting is with the short priced horses, the ‘favourites’, 
so bookmakers cannot be sure to have their various possible payouts covered in all races.

Treating the odds for each horse as though they are out by the same proportion (not 
an entirely valid assumption), to bring the sum of probabilities back to 1, we get for the 5:1 
horse: 0.1667 x 0.87512 = 0.1459, inverse is 6.8548 i.e. an estimate of the actual odds is 
5.85:1, not the 5:1 quoted by the bookmaker.

It is the difference between the betting odds, on which the bookie pays the prize, and 
the actual odds, which generates the profit for the bookies to stay in business. (Apart from 
any fraud or corruption, which there often is in gambling contexts.) In almost all cases 
when odds are used in society they are used in the commercial gambling sense to indicate 
the rate at which a prize is to be paid, they are not calculated directly from the probability 
of an event, i.e., odds are not used in practice as another way of expressing the probability of 
an event, so perhaps mathematics teachers should not use them in that way either. That is to 
say- if you teach the notion of chance odds you need to immediately distinguish it from payment 
odds. Remarkably the 2012 publication offered for use in schools (Victoria, 2012, p. 50) 
has the same misleading approach to gambling odds. In the section on ‘Understanding the 
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odds’ in a worksheet for students, after asking “What is the difference in payout between 
the Quinella, Trifecta and First Four?” it reads “The dividend [$18] for Its A Wonder [a 
horse] indicates that its [payment/real?] odds were 19/1. This means it was only expected 
to win once and lose 19 times every 20 starts.” Firstly 19/1 is just plainly wrong. They may 
mean 18/1, but as horse dividends in Australia are quoted inclusive of return of the unit 
bet, 17/1 is the figure they want. They have added when they should have subtracted. Let’s 
call it a ‘typo’. We all do them. But the truth is more like one in 24, when the difference 
between real and payment odds is taken into account! Introducing horse betting options 
in the classroom, then talking rubbish, this is what the State Government of Victoria is 
currently offering your children.

Difficulty of Probability Concepts
There are problems in teaching about gambling probabilities which any mathematics 

curriculum will need to take into account: Mathematics teaching doesn’t always get the point 
across, and probability concepts may be particularly difficult to grasp. Applying concepts 
to new contexts can be difficult. If we don’t engage students, sometimes quite concretely, 
they don’t always get it. There is research which questions the efficacy of knowledge 
about probability in gambling situations. It has long been held that general mathematical 
understanding does not innoculate against common intuitive errors about gambling 
(Peard, 1991, Ayres & Way, 2001). More recently Canadian researchers have addressed 
these issues (Benhsain & Ladoucer, 2004). In 2006, Williams and Connolly questioned 
whether “learning about the mathematics of gambling change[s] gambling behavior?” 
And Australians Lambos and Delfabbro (2005) have suggested “a basic understanding of 
mathematics, statistics or gambling odds is unlikely to be a protective factor in problem 
gambling because gamblers can pick and choose which information they chose to apply 
when the information is applied to activities in which they have a personal interest.” As the 
discoverer of illusions of control pointed out in 1975: Pure chance is especially difficult 
for people to understand and accept, as there is no contingency, no meaning and most 
importantly, no control (Langer, 1975). There has been too much assumption that because 
university students, for example, undertake courses about statistical tests, they should 
understand how those principles would apply in a gambling context. Teaching needs 
to be explicit and concrete to maximize effective communication. If we want students 
to understand principles applied to a particular context we should teach them in that 
context. Our great hope for transferable knowledge is not often fulfilled. Amongst those 
mathematically inclined, much of what I am suggesting we should teach (Smith, 2011) falls 
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into the category of the ‘bleeding’ obvious. The point is that it is not as obvious as some 
may think, and to be understood, requires teaching. People will not intuit mathematical 
understandings which took mathematicians hundreds of years to discover. High school 
education seems to be the most appropriate place for the probability of gambling to be 
made explicit.

High school students can be shown how the difference in pricing between the chance 
of a winning result and a lower corresponding payout generates guaranteed loss for players 
over time. Once grasped, extension of the concepts to more sophisticated chance gambling 
games, like electronic gaming machines (pokies) is conceptually straightforward, although 
the detail is almost prohibitively complicated, and often unavailable. 

An example of how far away governments have been from appropriate teaching 
responses is seen in Scotland. “Betting among schoolchildren has reached such desperate 
levels that Gamblers Anonymous is stepping up a major new project aimed at curbing the 
problem. A [Government] spokesman said it was up to schools how to deal with the issue. 
He added: ‘It is a matter for individual teachers, who could include gambling as part of the 
personal, social and development strand of the curriculum’” (Blythman, 2007). Again the 
response was not in terms of the mathematics of gambling.

A Confused Controversy
Even the type of gambling examples we may use in schools are fraught with controversy, 

as we overstep the realm of social education, and impinge on parental prerogatives about 
children’s education. However we do not need to introduce actual commercial gambling 
games, in order to teach about them. Dangers with teaching the mathematics of gambling 
include introducing gambling to students: just the fun, not the mathematics. Introducing 
commercial games; teaching their rules, initiates and grooms students for gambling.

A few years ago a professor in Scotland advocated teaching basic gambling mathematics 
and encountered considerable resistance (Denholm, 2007). “Professor Alastair Gillespie, 
chairman of the Scottish Mathematical Council, believes using dice and packs of cards 
in secondary school lessons would help pupils learn basic maths techniques such as 
probabilities. He also believes it would encourage more people to take up maths. However, 
the suggestion sparked anger from gambling support groups who claimed using it as 
a routine part of maths lessons would send the wrong signals to pupils and might even 
encourage gambling. Professor Gillespie said: “I am not advocating gambling for children 
but there are some classic problems in probability which are really gambling problems. 
Things like tossing coins and cutting cards are simple techniques which teach pupils about 
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basic maths and I think it would catch the interest of students if we were to introduce that 
in schools. What you are trying to do is engage with pupils and present them with scenarios 
which interest them because it shows how maths can be relevant and we need to do more of 
that.” Professor Gillespie said it was ‘unlikely’ that pupils would take up gambling because, 
by teaching them about the realities of probability, pupils would realise how unlikely it 
was they would win. “It would not lead to more people gambling. If anything, once people 
realised the odds, they would probably not buy lottery tickets or use fruit machines,” he 
added. However, Dr Alex Crawford, chief executive of RCA Trust, Scotland’s foremost 
gambling counselling agency, warned that linking mathematics to gambling in schools was 
tantamount to promoting it. “We know gambling is a high-risk problem in Scotland and 
making it mainstream in this way and raising interest in gambling would concern me,” he 
said. “The potential impact is massive. ...It is all very well to want to encourage more people 
to take up maths but this idea does not belong in the real world.” Mark Griffiths, a leading 
professor of gambling studies, said there was no evidence that teaching people gambling led 
to problem gamblers, as long as the social impact was understood. “Gambling should be on 
the school curriculum because it engages people with basic maths,” he said. “As long as there 
is an understanding that in some circumstances gambling can be a problem I don’t think 
there is anything wrong with this.” Similar debates have occurred in Australia. Gambling 
researcher Charles Livingstone (Productivity Commission, 2010, p. 9) said that “I think 
education campaigns look good, they make people feel that they’re doing something; 
whether they actually achieve anything is very doubtful, certainly in other areas of public 
health. I don’t think an education program in schools about the dangers of gambling is 
likely to do anything other than to encourage risk-taking kids to have a go. That’s, bluntly 
put, what the literature would suggest.” He made no comment on the mathematics involved.

Most recently, the leading gambling reformer, the otherwise highly respected Senator 
Nick xenaphon, tried to stop a specialist talk to an MAV general audience at the Melbourne 
Museum. In objecting to mathematical talk about sports gambling xenaphon wrote: “In 
essence, by purporting to teach individuals to assess gambling odds using a ‘mathematical 
approach’, you are in turn also encouraging people to gamble.”(Ross, 2012) Surely he should 
be more concerned about the ubiquitous advertising of gambling, including its extensive 
insertion into sports broadcasting? Extreme restrictions have been placed on commercial 
advertising of other undesirable products, like tobacco. There is a fine line between freedom 
of speech, and the banning of pernicious communications. It may be drawn along the 
boundary of commercial activity. 

Opportunities to review teaching on this topic by some individual Victorian 
secondary mathematics teachers produced occasional examples of good teaching about 
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the mathematics of gambling. These rare examples may be seen against the background of 

authorised curriculum documents: In Victoria (VCAA, 2012) they contain the dictum 

that students at level 4 (aged approx 15-16) should understand a key concept needed in 

understanding gambling expectation, viz: “Students describe and calculate probabilities 

using words, and fractions and decimals between 0 and 1. They calculate probabilities for 

chance outcomes (for example, using spinners) and use the symmetry properties of equally 

likely outcomes. They simulate chance events (for example, the chance that a family has 

three girls in a row) and understand that experimental estimates of probabilities converge to 
the theoretical probability in the long run.” Perhaps more appropriately this point ought to 

be made in the following year when their capacity to understand it is likely to be better 

developed, and when they are closer to legal gambling age. As an example in class they could 

consider simple gambling games.

The dilemmas about what gambling to introduce in schools are solved by having a 

clear understanding of which mathematics explains the outcomes from gambling, and then 

teaching that. Gambling is then only brought in incidentally to teach about it. There is no 

need to use commercial games at all, and it is certainly not necessary to outline their rules 

and betting options. In my own recent work I’ve concentrated on showing a mathematics 

curriculum around gambling, but it is sensible that broader issues than the mathematics of 

expected loss would be considered by students in secondary schools. What other content 

might a gambling curriculum contain? Articulating the common myths and illusions may 

bring awareness of how common they are, so they may be more readily avoided. Of particular 

interest from a numerical perspective may be some of the data informing numerical literacy 

about social facts of gambling, i.e. data about who spends how much, economic distortions, 

effects on local economies and so on., as well as non-mathematical material around risk 

and quality of life issues, from which there is now plenty to choose. Another worthwhile 

teaching restriction would be to not make gambling games more exciting than other 

school work by doing fun things you wouldn’t do in other classes. Don’t give out prizes for 

gambling. An exception might be to provide slightly desirable small lollies to use as betting 

tokens. The students will lose them if they play, and so may feel some of the disappointment 

which is genuinely experienced in commercial gambling. What we do not need is a poorly 

focused jumble of activities which do not deal directly and comprehensively with the three 

salient mathematical facts of commercial chance gambling, viz
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1.  The events are random and independent, 
2. There is a specific house margin on each bet. 
3. The probability distribution / reversion to the mean guarantees long term loss at 

the expected loss rate.

Social Responsibility of Mathematics Teachers
In numeracy education, the teacher has a responsibility to pass on the most significant 

mathematical social understandings of the world through real world examples (Smith, 
2000). Mathematics teachers have often filled the role of alerting students to basic financial 
gambits, so that students are not unduly penalised by inadvertent behaviours, including 
use of third-party ATMs, non-repayment of outstanding credit card balances, making 
small withdrawals from cheque accounts when the BAD tax was extant, failing to submit 
a tax threshold adjustment form to an employer, and suchlike. Gambling is now clearly a 
potential major financial risk, one that is uniquely susceptible to mathematical analysis and 
understanding. It is a breach of the teacher’s normal duty to their students to be leaving this 
out of the curriculum in the way it has been. Just because most people don’t have a sufficient 
grasp of probability concepts to actually explain or give an account of why they will lose, 
is not reason to avoid such teaching, if it is available. Clearer understanding of what the 
issues are in teaching about gambling should enable us to proceed with sensible curriculum 
interventions. Let’s challenge the notion that being vague about the likelihoods of gambling 
outcomes is satisfactory for the playing public, gambling counsellors, or educators.
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LUCKY COLOURS OF SUNSHINE: 
TEACHING THE MATHEMATICS OF 
CHANCE GAMBLING LOSS

Donald Smith

Victoria University

Lucky Colours of Sunshine is an elegantly simple gambling game, 
which helps reveal the salient mathematics of gambling. Collection 
and display of participant data, enables thorough analysis of game 
outcomes, and comparison with expectation over time. Further 
investigations are shown, using some freely available interactive 
displays, which help to ram home the reasons why you cannot win 
in the long run on commercial chance gambling like “the pokies”.

Mathematics and Chance Gambling
Last year the Mathematical Association of Victoria first published an example of 

proposed mathematics teaching about gambling for adolescent learners (Smith, 2011). 
This year I reprise teaching about the suggested game, then add dynamic, that is, interactive 
graphs which enable display of the likelihoods of the possible game results, over extended 
play. Elsewhere in these proceedings I discuss the broader educational and social issues 
around such teaching.

Gambling has been around for a while now. Selection by lot was done in Biblical times. 
In the Louvre and other major historical museums you can find examples of ancient dice 
in use more than 2000 years ago (see Figure 1). The mathematics of gambling has been 
around a while now too, though nowhere near as long in any developed form, and although 
probability theory began its life very much about gambling, gambling is now largely left out 
when probability is taught in schools.
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Figure 1. Ivory dice from Egypt (Roman Period)

Carefully designed teaching at a middle secondary level, can demonstrate emphatically 
why it is practically impossible to win over the long run on commercially available chance 
gambling. Mathematics fully describes the outcomes from betting on chance games. 
Short-term results are variable within a range of possibilities. Long-term results are less 
variable, with an ever-increasing certainty of long-term net loss. The results from chance 
gambling are a randomly patterned reflection of the structure of the game being played. 
Such mathematical content, can be developed with interaction from a student group, in a 
“hands-on” session. 

Key Teaching Points
Key misunderstandings in pure chance gambling, such as on electronic gambling 

machines, include a lack of: understanding of independence and randomness, understanding 
of the basic loss making structure of the game, and appreciation of the tendency of variable 
short-run chance results to congregate around the average mathematically expected result 
in the longer run. That is, that the variability of outcomes reduces in a larger sample. So 
these are ideas we could try to teach. Rather than focussing directly on the myths, illusions 
and misunderstandings people have about gambling, we are asking what understandings 
they need then examining how we teach them.

The structures of commercial gambling games set up the players to lose, in that the 
total of prizes offered is less than the average amount of betting needed to generate those 
prizes. That gives a house margin, whereby the operator is ensured a profitable business. In a 
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rather strange way, this means that each win, is actually when you ‘lose’, because you are not 
paid a prize commensurate with the unlikeliness of that win. You are typically paid a smaller 
prize than the frequency or rarity of the winning event would require, were it a fair game in 
the mathematical sense. Over time, if you keep playing, these insufficient winning payouts 
leave you further and further behind, as you also experience the normal range of losing bets. 

In a short period of play the random distribution of results may be more or less 
favourable toward you, when compared with the average expected loss. It may even give 
you a short term win, but longer term the chance of gaining results differing markedly from 
the expected rate of loss diminishes practically to nothing. This patterning of results over 
time, increasingly reflecting the inherent game structure, has been called the law of large 
numbers. It is quite possible to understand this without advanced mathematics talk of 
normal curves, distribution theory, and the central limit theorem, which typically are only 
addressed by advanced mathematics students.

High school students can quickly be shown how the difference in pricing between the 
chance of a winning result and a lower corresponding payout generates guaranteed loss for 
players over time. Once grasped, extension of these concepts to much more complicated 
chance gambling games, like Electronic Gaming Machines (EGMs), “the pokies”, is quite 
straightforward, although the arithmetic involved is somewhat prohibitive, and the prize 
frequencies sometimes unavailable as commercial in confidence.

Class Activities
I am assuming that students will receive theoretical and practical examples about 

probability in the classroom much as they do now, but I will argue that, in addition, we 
can usefully devote a few sessions directly to understanding why chance gambling produces 
losses for the players. We may stimulate interest in the structure of a gambling game by 
playing one. The game Lucky Colours of Sunshine has several features which make it useful 
for school teaching. It is not an existing commercial game but a simple simulation game 
which can help students to understand an important underpinning idea about gambling in 
general. It has a rate of loss consistent with common gambling products. Played in multiples 
of 12 it has beautifully simple arithmetic. This is a game of selecting one colour from four. If 
the correct colour is picked the players are paid a net prize of two units per unit bet. Players 
will need to record their colour choices, the colour that comes out, and the amount won or 
lost, an example is shown in Table 1.



Lucky Colours of Sunshine: Teaching the Mathematics of Chance Gambling Loss

280

Table 1
Recording Individual Results from Playing Lucky Colours of Sunshine

Game
Your choice 

of colour
Colour 

Picked out
Win or loss

Running total – 
number of wins

Running Total – 
money won 

 or lost

1 White Red Loss -1      =      -1

2 Blue Yellow Loss -1     →     -2

3 Blue Blue Win 1 +2    →      0

4 Yellow White Loss -1     →     -1

5 Blue Loss Loss -1     →     -2

6

As we play successive rounds, we may enquire as to who has won and who is still ahead. 
After two goes, we will very likely still have some people who are in front. Playing the game 
gives us the opportunity to raise various myths and illusions. If we play twelve times we 
will get a sufficient spread of results for instructional purposes. After playing 12 times the 
average expected number of wins is three, giving winnings of 9 units, and a net loss of three. 
Those who have won less than three times have been unlucky and have lost more than 
average, those who have won more than three times have been lucky, but still most of the 
lucky will find that they have lost overall. Doing better than average won’t guarantee an 
overall win. Only the very lucky who have won more than 4 times will be ahead, and they 
will be few and likely not far ahead. Of course, it is possible that someone has won big, but 
such freak results are just that.

If we begin again and play another set of 12, we will get similar results, except that it 
is likely that different people will be amongst the very lucky, thereby demonstrating the 
inability of the lucky to maintain their status in a random situation. Of course, you can 
modify the game to introduce some form of jackpot, e.g., if the same colour comes up four 
times in a row, and you didn’t bet on it for any of the four you can have a compensation 
jackpot of 10. Does that sound alluring? A maximal betting strategy is now possible. Never 
bet on the preceding winning colour and you can expect an increase in your payout of 10 in 
64, which now reduces your expected rate of loss to about 10%. 

At a more advanced level of mathematics teaching, we may predict the distribution of 
results from the group, and then compare the actual results. If we take our sets of results 
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and plot or average them all, we shall see that indeed the expected results are achieved. This 
is quite powerful, showing that the mathematical explanation of the randomness of the 
outcomes concurs strongly with reality, providing a predictive model much more successful 
than any stratagems you may favour, such as rituals or metaphysical beliefs. The collective 
results of the group may be tabulated, then graphed, as has been done in Figure 2.

Figure 2. Actual results for 17 players after 12 goes

If we begin again and play another set of 12, we will get similar results, except that it is 
very likely that different people will be amongst the very lucky, thereby demonstrating the 
inability of the lucky to maintain their status in a random situation. 

Dispelling Myths and Illusions: Questions to ask During Play
The experience of your students can be enriched by considering answers to questions 

you can ask during play. For example, Who is competitive when they play a game? Do you 
think you can improve if you try hard or practice? Do you think you can influence the 
colour drawn? Do you think you can do anything to become more successful in guessing 
the colour? If you are ahead after this set, will you be ahead on the next set? 

In playing this game, people may be asked to reflect upon the intuitive illusions about 
gambling. They may be aware of their competitive spirit, in a game over which they can have 
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no influence on the result. They may be aware that they are concentrating, and trying to feel 
the forthcoming colour. Repeated play will demonstrate that this does not work.

One becomes aware of how powerful the illusions of control are. We desire control 
of the situation. We are successful as humans, individually and as a species, when we have 
been able to recognise patterns. However, that is in situations where patterns have causal 
significance, and hence meaning. But, here we attribute meaning in circumstances without 
significance; circumstances that are random, and not just casually random, but causally 
random, i.e., in Australia and many other jurisdictions, by law, EGMs are designed to be 
random.

Analysing the Game
Consider the odds. Your chance of winning is one out of four, which is called 3 (against 

you) to 1 (for you). Your average expectation is one win out of four, three losses out of four. 
But when you win you are only paid 2 to 1. You would need to be paid at 3 to 1 on your wins 
to match the outlay on your expected losses. That is, you need a winning prize to equal your 
expected losses, in a (mathematically) fair game. This mismatch between the payment odds 
and the real odds is fundamental to commercial chance gambling.

We can calculate the expected average rate of loss, which I much prefer to “return to 
player” (RTP).

In Summary: Play the Game in Sets of 12 over  
Several Lessons. 

Record individual results. Consider the odds of winning. Consider the average 
expectation of numbers of wins in a certain number of games played, and the corresponding 
expected loss. Graph group results, note spread, wins and losses. Do it again, a few times. 
Compare individual results; variation and losses. Total individual results, graph (and 
compare to Binomial/Normal curve). Be amazed that maths all along could tell us what 
distribution of results we would get from playing this random chance game. It’s not essential 
to take up my exact suggestions, but I hope you see the possibilities.

We can go on to show the expected distribution of wins (and corresponding net 



Donald Smith

283

betting outcomes) over increasingly large periods of play. Here this is shown in a freely 
available dynamic display using the maths software program Mathematica, initially 
available at http://ftp.physics.uwa.edu.au/pub/Mathematica/VU/Smith/ provided you 
first download a free CDF player in order to view it.

All the parameters are variable. Figure 3 shows an example of the output of the software 
program to illustrate what it does. This shows the expectations of numbers of wins from 24 
games, with the average expectancy and the breakeven lines. The number of wins may be 
counted along the abscissa, and is scaled as a percentage. As you increase the number of 
games played a decreasing proportion of the graph is on the win side of the breakeven line.

 Figure 3. Expected average distribution of results from 24 goes

Secondly, programming enables us to play the game a vast number of times at the flick 
of a button. Actual long run outcomes may thus be found in an instant. The long run no 
longer takes a long time. This second remarkable dynamic display in Mathematica allows 
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you to play the game in sets of 12, from 100 to 100,000 times, up to a total of 1.2 million 
games, showing the actual distribution of results of sets of 12, compared with expectation. 
I don’t know the underlying software, but when you play 1200 games you can see variation 
from average expectation, but when you play 1.2 million no deviation from expectation 
is visible. I find it flabbergasting. It is the very point I am trying to make; how reversion 
to the expected loss will guarantee taking your money over time on all chance games of 
this sort, such as the pokies. In my view gambling provision is mostly a fraudulent activity, 
perpetrated on the insufficiently informed.

 Figure 4. Expectation and distribution of wins from repeated sets of 12
More Background Mathematics for Higher and Lower Levels
A decision tree (see Figure 5) lets us see the range of possibilities from multiple goes. 

Although each of the 64 sequences of outcomes from 3 goes is unique, some of them share 
characteristics when viewed as combinations instead of permutations. Thus there are 27 
ways to get 1 win from 3 goes, and so on.
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 Figure 5. Mapping the Permutations of the Colours

We may also consider how the probability distribution varies as the sample size, i.e. 
number of games, increases.

The probability of a particular number of wins from a set number of goes is given by 
the formula:

The most common outcome for 12 goes is 3 wins (24% of the time), giving a loss 
of 3 betting units. Mathematics teachers understand standard deviations, so I offer this 
information to impress you: After 12 goes, average loss of 3, with σ = 4.5. Quite a few 
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winners. After 100 goes, average loss of 25, σ = 13. So, about 3% are still winners. Average 
loss of 100 for 400 goes, σ = 26, i.e. a winner is almost 4 standard deviations away. Not a 
popular place. If we played this game 400 times, a set of 400, we would need a stadium 
holding 10,000 players to have the likelihood that one or two players, up to a handful, 
might still be ahead. The likelihood of loss over increasing play is dramatic. The formula to 
calculate a standard deviation for a binomial distribution is given by:  .

To compare the results from 12 goes and 36 goes, they may be graphed with matching 
average expectancy and breakeven lines on the two graph’s axes. To make the visual 
comparisons easier the results are grouped in the 36 games, generating graphs with equal 
area under the graphs, i.e. total pr =1. The probability of getting results to the right of 
the breakeven line reduces as games increase, and there is increasing crowding around the 
average expectancy (see Figure 6).

Figure 6. Probability distribution of game outcomes for 12 and 36 goes

Player results from 36 games could be graphed, with the individual movement of 
players between the 12 and 36 game graphs noted. Most players will regress toward the 
mean line.

Once the negative expectation on chance gambling is understood, it is the increasing 
certainty of that loss outcome over time which seems crucial to understand. Other resources 
can round out the teaching on distributions. Computer simulation of regression to the 
mean is a useful activity. Extension to gambling which is not purely chance based, such as 
sports betting, introduces new complications, but the difficulties in overcoming a house 
margin long term remains an important point.

A few other examples of teaching about the maths of gambling at a school level have 
impressed me. There is a Canadian website on “How Gambling Really Works”, at www.



Donald Smith

287

getgamblingfacts.ca. It explains the key teaching points about the maths of gambling, but 
is aimed at gamblers rather than school students so should be used choosily. Tim Falkiner 
(2001) used visual examples, such as simulation of roulette results on “even-money” (18:19) 
bets, in his teaching software, and some individual teachers have constructed their own long 
runs in Excel. Good luck!
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HIGH MATHEMATICAL 
PERFORMANCE ON CLASS TESTS IS 
NOT A PREDICTOR OF PROBLEM-
SOLVING ABILITY: WHY?

Gaye Williams

Deakin University; The University of Melbourne

Drawing on my findings as a teacher and the further 
understandings I have developed as a researcher, I provide 
illustrations of confident high performing students from my 
research classes to explore the notion of ‘enabling confidence’ and 
‘disabling confidence’. Students with enabling confidence incline 
to explore unfamiliar mathematical situations and students 
with disabling confidence do not. The higher likelihood of many 
teaching practices developing disabling confidence, and our 
obligation to develop enabling confidence are discussed. 

Introduction
Can you identify high performing students in your classes who are confident in 

their abilities to ‘do mathematics’ but need to be told: (a) what to do differently for every 
slight ‘twist and turn’ in questions in an exercise; and (b) what mathematics to use when a 
question is set in a different context to that in which the mathematics was learnt? Have you 
noticed what happens when they are asked to: (a) explore unfamiliar challenging problems; 
or (b) do exam questions requiring the use of familiar mathematics in unfamiliar ways? This 
paper examines the activity of these students in comparison to those inclined to explore 
mathematics. 
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The Nature of Confidence
My research has shown that ‘resilience’ in the form of Martin Seligman’s (1995) 

‘optimism’ is a characteristic of students who are inclined to explore unfamiliar mathematical 
ideas. It is an orientation to failures and successes which I have elaborated in terms of 
mathematical problem solving as ‘not knowing’ (failure) and ‘finding out’ (success). Thus, 
an optimistic child sees not knowing as temporary and able to be overcome through the 
personal effort of looking into the situation to identify what variables they can control and 
which of these to vary to increase their likelihood of success—finding out more. They perceive 
their successes as permanent (able to be achieved again) and take them on as characteristics 
of self: “I did this! I am good at this”. Two of these six described facets of optimism (in 
italics) together characterize confidence, the “degree to which a person feels certain of 
her or his ability to learn and perform well in mathematics” (Hart, 1999, p. 243), and the 
perceived associated personal characteristic: “… one’s ability to learn and to perform well 
on mathematical tasks” (Fenemma & Sherman, 1976, p. 326). Confident students believe 
they will be able to perform mathematically in the future due to personal characteristics 
they possess.

The Students and Their Problem Solving Responses 
The four students selected, Sam, Hank, Eliza, and Patrick, illustrate the activity of 

students who are, or are not, inclined to explore unfamiliar mathematics. All attended 
the same school and were part of problem solving lessons I undertook in their classrooms 
during their Grade 6 year. Sam, Patrick, and Eliza were in the same class and Patrick and 
Eliza in the same group during the task under focus. Hank was in a different Grade 6 class in 
a different year. All were confident students who performed at a high level in mathematics 
tests in their usual mathematics classes. Although these illustrations are limited to one 
school and one grade, I have found such responses to tasks during my teaching (Year 7-12, 
see for example, Williams 1994, 1997, 2000a, 2000b, 2000c) and during my research 
projects (Year 12, Year 8, Grades 3-6), and can identify such activity in research undertaken 
by others in my classrooms (Barnes, 2000; Groves & Doig, 2004). 

Sam and Hank were amongst the highest performing students in their classes on regular 
class tests (predominantly recall, and reproduction of taught mathematical procedures). 
They appeared confident in their mathematical abilities and gave their high tests marks 
as the reason they knew they were ‘good at maths’. Each of them stated that they learnt 
mathematics through external means: by listening to their teacher, consulting texts, and / 
or finding information on the Internet. 
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Eliza and Patrick performed at a high level on class tests. They displayed confidence in 
their ability to think mathematically. They each described learning as an active process in 
which they participated and made sense of ideas. Patrick stated that he learnt during the 
problem solving lessons by working out ways to proceed where other groups had identified 
problems in what they had developed so far. He stated that he also learnt by thinking about 
why various students had made mistakes in their reports. Eliza described how concrete 
aides provided during the problem solving activities helped her to think as she developed 
an understanding of new ideas: “When I try to do things in my mind it is hard for me to 
figure it out ’till I really know how so the blocks help me to learn how to figure it out in 
my mind”. She also described how her parents helped her when she had problems with 
homework: “they don’t actually tell me the answer … they sort of help me on my way”. Both 
these students saw ‘not knowing’ as temporary and finding out as involving developing 
strategies to helped them reorganize mathematical ideas as part of sense making. 

The Task ‘How Many Boxes’
Properties of ‘boxes’ as the term was used in this task (rectangular prisms/cuboids) 

were explored initially with students using common language to describe them. Students 
were then asked to find as many different solid boxes as they could that each contained 24 
‘little’ cubes (cubic centimetres: term not provided). As they worked with this task, they 
were asked questions like: How many can you make? Can you see any patterns to the boxes 
that can be made? Why do you get that pattern? Any ideas? Have you found them all? How 
do you know? Can you make a mathematical argument for how you know you have them 
all? Once these boxes had been explored, groups were told they were going to participate 
in a game. They would be told how many little cubes were used to make a ‘hidden box’ and 
asked to find its dimensions (including its orientation). To do so, each group could ask one 
‘yes/no’ question. All groups would have access to all questions and their answers, and the 
winning group would be the first group to give the correct dimensions of the box with an 
appropriate argument as to why these were the dimensions. Before the game commenced, 
groups had five minutes to brainstorm about what question to ask. During that time they 
had access to twenty-four little cubes. 

Student Activity 
Student task activity was captured on video with audio record of talk in each group, 

group reports, and group discussion of these reports. Each student took part in a post lesson 
video stimulated interview in which they found parts of the video they wanted to talk 
about, and discuss anything new they learnt and what helped them to learn it. 
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Sam and Hank 
These two students knew the volume of a cuboid formula before the task commenced 

and each stated they did not learn anything new during the three-session task. 
Sam, in his post-lesson interview, knew the formula included the side lengths of the 

box but not why multiplying them together gave the number of little cubes in the box. Sam’s 
lack of understanding of the structure of cubes within the box was demonstrated during the 
task: he did not recognize there was something the matter with a 3×3×3 box presented by 
a member of his group. It appeared Sam did not know this box contained 27 little cubes 
rather than 24. As I moved around the groups, and in whole class settings, I asked him 
questions across more than a twenty-minute interval before Sam even began to realize 
there could be something the matter with the box his group member had presented. Sam’s 
post lesson interview showed he was still unaware of the structure of a rectangular prism 
at the end of the task. This lack of awareness of the structure limited the ways in which 
he could evaluate the reasonableness of the 3 × 3 × 3 box. He would have been unable to 
find the number of cubes in the box by considering layers of cubes. Sam considered the 
task boring stating he already knew everything about this topic. This raises questions about 
whether Sam’s confidence in his ability to know and reproduce information about volumes 
of cuboids limited his likelihood of recognizing task complexities that could help develop 
understanding of the structure that led to the rule? 

Hank’s activity was similar to Sam’s in some regards in that he continued to work 
only with the rule and numerical representations through out the task. Hank quickly 
recognized number patterns: factors were involved. He could see that this fitted with the 
multiplicative nature of the volume of a rectangular prism rule. Like Sam though, although 
he was repeatedly asked questions about why these factors with the rule related to finding 
the number of cubes in the boxes, he was unable to extend his thinking beyond identifying 
the factors as the dimensions of the ‘boxes’. One of the final questions I asked Hank was: 

How does that number pattern, which you beautifully explained yesterday, fit with 
those actual cubes in that box- and I don’t just mean length width and height. Why, when 
you multiply those together, do you get the total number in that box? 

I then shifted away from the group and Hank repeated again what he had already said 
to his group (without extending his thinking further): “[fast and soft] factors are numbers 
that are multiple- you can multiply factors to get the number”. This was a cyclical argument 
based around Hank’s knowledge that the volume was found by multiplying the length by 
the width by the height, and his knowledge of the meanings of factors and multiples. Hank 
was thinking numerically without linking what he had identified to the internal structure 
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of the boxes. His lack of understanding of that structure and how it related to the factors 
he had generated was apparent when I gave an additional clue about the hidden box during 
the game: “the cross section to it has nine little squares in it”. Many groups were able to 
make sense of this clue because they had become aware of the arrangement of cubes in boxes 
(the structure), and the term ‘cross section’ had already been explained. Hank though, 
exclaimed: “Hu … that’s weird!” as he tried to make sense of the clue linking the structure 
of the cubes within the box with the dimensions and the volume.

In each of these classes, by the end the task, many groups who did not know the volume 
formula at the start of the task had developed an understanding of the structure of a cuboid 
and had developed some way of finding the number of cubes within using this structure. 
Hank and Sam on the other hand continued to know only the volume rule and were unable 
to give any explanation for why it worked. 

Eliza and Patrick 
These two students both actively thought about relationships between the numbers, 

the cubes, and the boxes during the task rather than only focusing on numbers and number 
patterns. Eliza reported changes in her understandings over time that demonstrated 
her group had progressively developed new ideas, and that she had contributed to this 
development. When her group (including Patrick) tried to work out whether a box could 
be made with 32 cubes, they only had 24 little cubes available. The group started to make 
a cube stack (2 × 2 square cross section) counting the cubes one by one. In her interview 
Eliza described the strategy the group used to cope with the limited number of cubes they 
had available: “I can’t remember how many we had stacked up- but then we had (pause) a 
drawing on a piece of paper [two 2 × 2 grids]”. She went on to explain the purpose of the 
drawing: “we needed that to pretend there was another bit of eight [two layers of four to 
add to the stack]”. At that stage, the group did not know how many layers they needed. It 
was Eliza’s idea to represent the rest of the cubes on paper. In her interview, Eliza identified 
that it was during this time of making extra layers on paper that the group realized they 
could count by fours (layers) to find the number of cubes in the box. Eliza displayed her 
new understandings in her report to the class in which she paused / hesitated at times 
over terms she and her group had recently begun to use. By the time she reported, she had 
realized she could change the orientation of the box to four layers of eight cubes: 

Start by making four flat boxes out of eight one-centimetre cubes. Stack 
the four to make 32. Count them- there should be four in the height and 
eight in the length so you use four times eight, which is thir- so you have 
32 in the box
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Eliza gave the length as eight but her explanations to a student questioning this use of 

the term ‘length’ showed she meant the base contained eight little cubes—the group were 

still in the process of developing appropriate terminology. Eliza contributed several times 

to her group’s construction of new knowledge. Through this process she and other group 

members developed an understanding of the structure of the cubes in the ‘box’ to the extent 

of ‘seeing’ layers but not yet ‘seeing’ the base as an array (see Williams, 2010 for more about 

problems students have ‘seeing’ these arrays). 

Eliza’s responses show that trying to work out what is unfamiliar (‘not known’) is 

something she does frequently, and that she expects to be able to gain some success in doing 

so. She perceived that the personal effort of using her mind while using the blocks would 

help her. When asked how she thought she was ‘going in maths’ and how she decided that, 

Eliza reflected for some time before saying: “I know it’s not because (pause) I get things 

right” and after further consideration she continued: “I think it’s because I contribute to the 

question and things (pause) rather than (pause) just agree and disagree”.

Patrick explained that he learnt by thinking about other group reports including: 

how to do something another group was still trying to work out, and thinking about why 

another group had developed an answer that he could see was incorrect. He was willing 

to look in to situations to see what could be changed to increase the likelihood of finding 

out about something that ‘was not yet known’.  For example, he used his newly developed 

understanding of layers to find a way to solve what another group was puzzling about. That 

group had intended to make a box containing 12 cubes and found the box they produced 

contained 24 cubes. In his interview, Patrick reported his thinking on how they could solve 

their problem: “You know how they got it wrong- it made me think about (pause) how 

they could get it right”:  

It [the shape they made] was 2 2 6 [dimensions two by two by six]. They 

got 24 and they have to get 12 what if they changed the 6 to 3 and that 

would just halve it and instead of 24 you get 12.

Patrick considered the shape as six layers of four and halving the number of layers 

giving half the number of little cubes. Like Eliza, Patrick enacted optimistic problem 

solving activity.
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 Discussion and Conclusions
All four students displayed the pair of optimistic indicators associated with confidence, 

but when considering other features of optimism, Sam and Hank perceived ‘finding out’ 
as requiring the assistance of external sources (teacher, books, internet), which is a non-
optimistic indicator. Each considered they knew the topic well and did not need to know 
more about it. Eliza and Patrick, on the other hand, perceived not knowing as temporary and 
were inclined to expend personal effort in looking in to situations because they knew they 
would be able to find out more. These are optimistic indicators. The activity of these four 
students shows some confident high performing students (Sam, Hank) judge their ability 
to do mathematics through external means like the marks they achieve, and others (Patrick, 
Eliza) judge their ability to do mathematics internally, by the actions they take to find out 
what they still do not know. Where Sam and Hank considered learning mathematics as 
‘taking in’ rules and procedures from external sources, memorizing them and substituting 
into them without thinking about their meanings, Patrick and Eliza considered learning 
mathematics was primarily about puzzling over unfamiliar mathematical ideas and making 
meaning from them. Eliza and Patrick developed their confidence through the success 
they gained from working things out for themselves (enabling confidence), and Hank and 
Sam developed their confidence from their high marks on tests that were primarily about 
reproducing mathematics they had been taught (disabling confidence). These illustrations 
show what I have found more generally across upper elementary and secondary school 
classes: the way students develop confidence can influence their inclination to problem solve. 

Research has linked confidence with ability to do mathematics, but ability to do 
mathematics was measured by performance on multiple choice items not open-ended tasks 
(Pajares & Miller, 1997). This raises several questions: What is the nature of the ability 
to do mathematics? Do we need to look more deeply at the nature of confidence and 
mathematical performance to be able to interpret associations between them? 

Given many mathematics classes across the state (and internationally) still use 
teaching approaches that focus primarily on memorizing rules, reproducing rules, and 
using procedures to answer questions that students have already been taught how to 
solve, there is a high likelihood that many students in our classes are developing disabling 
confidence. Where assessment only values such mathematical performances, the problem 
is amplified. If we want to build the problem solving capacity of students, we need to give 
them opportunities to think for themselves and reward them for doing so. In this way, the 
ability to think mathematically rather than just repeat rules and procedures becomes the 
intended goal and our students become better problem solvers who understand where it 
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is appropriate to use what mathematics. This is our challenge! The shaping paper for the 
Australian Mathematics Curriculum highlights the need for students to develop deep 
mathematical understandings (see for example, Williams, 2010). We must not lose sight of 
this intention as we plan the future of mathematics education in Victoria. 
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PROBLEM-SOLVING: ‘SAME PACE OF 
THINKING’ GROUPS

Gaye Williams
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Judith Harrington and Sharon Goldfinch 

Brunswick South West Primary

Gaye and Brunswick South West Primary School staff have 
worked together since 2004 on problem solving in mathematics. 
We have explored grouping students, questioning, and selecting 
adapting and designing tasks. In this paper, Sharon, Judy (Grade 
5/6 teachers), and Gaye focus on the benefits of composing groups 
that enable rich student conversations during the development 
of new mathematical ideas (‘same pace of thinking’ groups) and 
strategies to do so.

Introduction
Terezinha Nunes (2010) studied young Brazilian street vendors’ mathematical 

competencies at school and on the street as they managed and sold their wares. Selling 
on the streets, they competently worked out profits, and made decisions about what they 
bought and sold but at school they were unable to perform set calculations based on the 
same mathematics. ‘School mathematics’, which was presented as rules and procedures, was 
meaningless to them. They were failing at school yet they understood this same mathematics 
in out of school contexts where they developed mathematical ideas for purposes that were 
extremely important for their livelihood. The Australian Mathematics Curriculum as 
framed was intended to address the problem Nunes identified. That students would learn 
mathematics in meaningful ways that include problem-solving and student conversations. 
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Gaye and Brunswick South West Primary School (BSW) staff have focused on learning 
mathematics this way for several years now. Williams and Cavellin (2004) describe early 
work, and Judy, Sharon and Gaye now reflect on more recent work together in Grade 5/6 
classrooms. Their focus is on group composition: benefits of grouping students by ‘same 
pace of thinking’, and strategies to enable this.

Engaged to Learn Approach 
‘Same pace of thinking’groups is one of the key aspects of Gaye’s Engaged to Learn 

Approach to problem solving (Williams, 2009) within which students work in small 
groups (3-4 students) with problem solving tasks that are accessible through simple or 
more complex mathematics that students can develop using a variety of representations. 
Each group reports to the class at regular intervals with a different reporter each time. The 
teacher does not give hints, agree or disagree with mathematics developed but rather asks 
questions to elicit further student thinking. The teacher composes the groups using criteria 
Gaye developed as a teacher:

•	  Preferably groups of four but three if this is not possible
•	  Gender balance if possible, but at least no less girls than boys
•	  In general separate friends so previously developed social interactions do not 

interfere with collaborations around creative thinking
•	  ‘Positive personality’ to overcome any negative influence
•	  Same pace of thinking (not same level of performance)
After observing her students working with Gaye, Judy shared the following insights on 

how she perceived the Engaged to Learn Approach structured student learning. She could 
see that this classroom activity increases the likelihood of equal participation including 
equal ‘voice’ because: 

•	  Each individual in the group is aware of his/her roles, and knows that they will be 
reporting to the class during the session.

•	  This eliminates the option to sit back and let others do the work.
•	  Students pay attention throughout to be able to report confidently.
•	  The group ‘priming’ the reporter reduces pressure on the reporter.
•	  Less confident students don’t tend to feel threatened during their reports because 

of this group preparation (priming). 
‘Priming’ involves the groups brainstorming what to report, the reporter practicing 

this report, and the group refining it to fit what they want. Judy links this reporting process 
to Joseph Joubert: “to teach is to learn twice” <http://thinkexist.com/quotation/to_
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teach_is_to_learn_twice/7984.html> because all group members have the opportunity to 
reinforce concepts as they prepare and report. She could see that students had developed and 
consolidated knowledge during reporting rounds and that it assisted them to move forward. 

Judy identified instructions, materials, and timing, as key to the approach. She noted 
that clear instructions were given about the nature of the task at the start of sessions but 
information about how to approach the task is not given. Various materials were made 
available to students: some possibly useful and some not. Students decide how to approach 
the problem, what to use, and how to use it, so the usefulness (or not) of materials available 
could depend on the solution pathways selected. By not telling students what materials to 
use or how to use them, the problem is left very open-ended with many opportunities for 
groups to pursue pathways they consider useful. Judy emphasized the need for the teacher 
to carefully consider what materials to present, and how. She identified several strategies 
she had seen Gaye use and why she considered them useful. By giving students insufficient 
pieces of concrete materials for each to create an individual model, students were ‘forced’ to 
collaborate, and by providing only one piece of paper per group, they were encouraged to 
work together in the middle of the table. Judy also drew attention to the clear time limits 
(and warnings as limits approached) contributing to sustained focus. Because time intervals 
were short, and students were keen to have something to show in their reports, they focused. 
They didn’t want to stand up and say nothing. During reporting time, students were ready 
to share, and to listen to what others had developed and consider how it fitted with their 
own ideas. 

Judy provided Gaye with new insight into how this approach satisfied (whilst 
modifying) the behavior of a good thinker who wanted to dominate normal classroom 
discussions. Within this approach, he had his chance to speak in the group, but also had 
to listen to others, especially when he was reporting and required to represent the whole 
group. Because others in his group thought at a similar pace, they also wanted to be heard 
not sit back and say nothing, so he could not dominate. Judy noticed this very competitive 
student listened carefully to other group presentations to gain “clues” to a puzzle that he 
was determined to solve to be the “winner”. In looking at her research videos from various 
schools, Gaye found other examples of such students. Thanks Judy!

Sharon drew attention to the careful wording of tasks and reflected that the teacher 
needs to have a clear idea of the desired learning as part of ensuring that maximum learning 
is achieved. She emphasised the process as just as important as the product: “providing 
students with opportunities to explore, and share their ideas has been much more valuable 
than racing to an immediate ‘correct’ answer”. Sharon illustrates with what she observed as 
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her own class worked with Gaye. The task required students to make solid boxes using 24 
tiny cubes. Students had time to experiment then describe one of their self-designed boxes 
to the class who were unable to see it clearly due to its size. Sharon reflected that, instead of 
rushing straight to an answer the students were:

•	  Encouraged to experiment with different possibilities/models, and
•	  Given freedom to develop their own mathematical language without the pressure 

of instantly responding with ‘correct’ terminology. 
Her perception of the role of a teacher changed significantly whilst working in her 

classroom with Gaye. She drew attention to the following comment Gaye made to her in 
class as a turning point in changing her mind-set: “there is more in what is not said [by the 
teacher]”. Sharon began to reflect on this comment and its implications: moving away from 
teacher in control shepherding students to the answer, and towards the teacher stepping 
back and taking a more passive role. Sharon elaborated further: “instead of hinting the 
teacher simply listens and encourages the students to ask questions and reflect on their own 
and others’ thinking. Instead of leading the students to a solution the teacher asks questions 
that prompt discussion and deepen thinking.” Sharon emphasised that “You cannot assume 
that students will come to a task with a definite set of skills or prior knowledge”. Instead, 
different students come to the task with different knowledge. Gaye draws attention to 
Sharon’s initial impression of a ‘more ‘passive’ teacher which is a common first impression 
for many teachers (e.g., see Williams, Menzel & Sheridan, 2009). She emphasises the 
complexity of teacher actions involved in listening to the students, then flexibly responding 
to their moment-by-moment activity with highly appropriate questions: responsive action 
not passive inaction.

Group Composition
Sharon has changed some of her grouping practices whilst participating in the 

Engaged to Learn Approach. She composes smaller groups, pays attention to gender 
balance, sometimes reconfigures seating arrangements, and has developed strategies for 
grouping in classes with more boys than girls. She has realised that larger groups do not 
work as successfully as groups of three or four because some students tend to sit back and 
not participate as actively whereas groups of three or four give all students more chance 
to participate. She also observed that students are less intimidated when sharing ideas in 
smaller groups. Sharon found that something as simple as seating allocation within the 
group has effects. For example, seating students of the same gender on one side of the 
table can help a student to feel more comfortable, but allowing friends to sit side by side or 
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directly across from each other can contribute to excluding other students from discussions. 
Sitting friends diagonally opposite each other can help resolve this. Seat allocation can also 
be used to limit the talk of dominant students and open opportunities for quieter students 
to talk. Sharon observed effects of non-gender balance when one girl was absent leaving 
one girl with two boys. This girl participated far less in that session than in those where the 
other girl was present. In 2012 when Grade 5/6 had more boys than girls, Sharon carefully 
considered the overall confidence of different girls to decide who could comfortably work 
in a ‘mostly boy’ group. She also created several groups of three to accommodate for the 
gender imbalance. Useful strategies! Gaye adds another: some ‘all boy’ groups.

To limit disengagement, Sharon sometimes places negative, less enthusiastic students 
with more positive students. She recalls grouping a fast paced thinker, who tended to be 
negative in new situations, with resilient, highly enthusiastic students. Sharon describes 
‘resilient’ as taking everything in their stride - not phased by a student’s repeated attempts 
to distract. This group ignored this student’s negative comments and encouraged him to 
share his ideas and become involved in the task. They focused on what he was able to share 
instead of commenting on his negative activity. 

Gaye describes groups with the same pace of thinking as able to ‘think together’ during 
problem solving activity: understanding and building on ideas as others suggest them and 
contributing ideas themselves. A student from Gaye’s research captures how many students 
perceive ‘same pace of thinking’ groups:

 [The task] seemed a little bit … daunting at first … but once we started I 
thought oh well this isn’t so hard- … in some maths classes … we have to 
learn one thing … everyone has to learn the same thing … but … with this 
lesson … I liked it because … we could kind of choose what we wanted to 
get from it- … yeah … I like the freedom … definitely … because we got to 
choose what we … get out of it- 

This student identified that each group could focus on mathematics that was useful for 
them. She liked learning this way with freedom to select what was valuable for the group to 
pursue rather having to follow the teacher’s lead.

Judy has found that in ‘same pace of thinking’ groups, students can’t rely on one person 
to do all the work or make suggestions. They need to build ideas together to produce a 
report. She groups quieter students together because she knows the expectations of the 
approach mean each quiet student must contribute. They cannot sit back and rely on 
another because there is no one in the group who would normally do the talking and they 
know they have to report their group findings. This need to produce findings, and the 
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absence of vocal group members motivates these students to speak. Judy found it rewarding 
to observe many moments where these students had the opportunity to speak up and be 
heard (probably for the first time), had something valuable to say, and saw it acknowledged 
by others. In forming her ‘same pace of thinking’ groups, she considers the qualities of 
students such as how vocal they are, how confident, how easily they are distracted, and how 
deeply they think. She is inclined to put very vocal students together so that one student 
can’t just do all the talking but instead group members compete and debate with each other 
regardless of their usual performance in maths. Judy also discusses those students with a 
‘good grasp of maths’ who tend to sit back in ‘normal’ group work in class and say nothing. 
She suggests possible reasons: they see no need as the answer appears obvious, or the teacher 
won’t choose them because they always know the answer, or they are just disengaged 
because they don’t feel challenged. During the Engaged to Learn Approach, Judy found 
these students participated regardless of their prior achievements and knowledge (as she 
understood that knowledge from what she generally saw in class). She thought this was 
because students were challenged to find out what they could about the given situation, and 
they didn’t feel pressured about what they “know” or “should” know. They were confident 
to start or enter the ‘conversation’ at any point. Notice how Judy qualifies what she knows 
of students’ knowledge in terms of what she has seen in ‘usual’ maths classes. Like many 
teachers working with Gaye, there were times when Sharon and Judy were really surprised 
about the thinking some students did.

Sharon observed that students had more control of their learning in ‘same pace of 
thinking’ groups (like the student Gaye quoted). She found these groups allow students to 
develop a common understanding and to reach a solution collaboratively as they share and 
explore ideas at their own pace and choose appropriate pathways that interest them. They 
have the choice of different materials and the class ‘guide’ each other’s thinking through 
the staggered reporting throughout the sessions. She was particularly interested in what 
occurred in ‘slower pace of thinking’ groups and how to support them. Sharon considered 
herself lucky to have opportunity to observe and reflect on one of her slower pace of 
thinking groups achieving success working as a team. These students who often sat back, 
afraid of being wrong or unsure where to start when faced with unfamiliar mathematical 
ideas, supported each other taking risks, experimenting and explaining their thinking. They 
openly discussed their ideas and enthusiastically trialed each other’s. They were surprisingly 
keen to present their findings to the class and listened for clues from other reports to assist 
themselves. Sharon identified the teacher’s challenge as ‘not to guide’in a certain direction 
but to ask questions to prompt further discussion and encourage further exploring of their 
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ideas. She found that locating herself to the side of a group simply listening had a great 
impact. Students felt supported but with the freedom to work independently. 

When Sharon and Gaye decided to group together students likely to ‘take over’ in other 
groups ( Judy’s vocal students), Sharon tried to dissect why one of these groups worked 
well together when we had expected they might be ‘dysfunctional’. Gaye draws attention to 
sometimes needing to compose one ‘dysfunctional group’ to achieve other ‘good’ groups, 
and the need to ensure these students are in ‘good groups’ for the next task. With the group 
in question, Sharon considered these students worked comfortably together because they 
shared the same abstract thinking. They harnessed their combined energy and became 
highly enthusiastic as they experimented with each other’s ideas, welcomed new suggestions, 
and actively engaged in animated debate about possible effective strategies.

With regard to forming ‘same pace of thinking’ groups, Sharon reflects that even after 
observing and participating in classes with Gaye, there is always a temptation to revert back 
to familiar performance based groupings where you simply look at data. Gaye can see why 
busy teachers sometimes feel this temptation. All that said, Sharon has developed very 
useful strategies to help form ‘same pace of thinking’ groups in 2012. In 2011, she worked 
with Gaye with a BSW Grade 5/6 class and in 2012 many of her Grade 6 students were 
Grade 5 students in that 2011 class. Sharon uses groupings she made with Gaye in 2011 to 
form her 2012 groups. She then looks closely at her new Grade 5 students, thinks carefully 
about their pace of thinking whilst trying to equate each to similar 2011 Grade 6 students 
(now in Year 7). She finds this enables her to step into Gaye’s mindset and think carefully 
about her students’ paces of thinking without worrying about getting it all terribly wrong. 
This has helped her think about the dynamics of successful groups and reflect on groups 
that had not worked as well as expected in 2011. Gaye says that by using these strategies, 
Sharon is putting together a ‘bank of ideas’ to use in the future. Even with Gaye’s groupings 
from last year to rely on, Sharon found it was a case of trial and error at first and refinement 
after she observed the students working together. She says that even after working so closely 
with Gaye, she still had a tendency to question her own decisions but she perseveres. Sharon 
pays particular attention to changes in student’s personalities over time, and differences 
in individual’s paces of thinking. She regularly evaluates her groups looking for ways to 
improve them. Gaye says what Sharon shows is a willingness to experiment, trial ideas, 
reflect, and modify and that such activity will enable Sharon to more confidently form same 
pace of thinking groups over time.

Sharon was initially amazed at how different the composition of Gaye’s same ‘pace of 
thinking groups’ were from her usual performance-based groups. She reported that BSW 
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upper primary staff now use a mix of explicit, performance-based groupings and ‘same pace 
of thinking’ groupings:

“We believe this allows the best of both worlds for our students. Through 
the use of fluid groupings we deliver explicit instruction based on the 
student’s data which targets their Zone of Proximal Development. 
Through the use of ‘same pace of thinking’ group we provide students 
with the opportunity to work with students from a range of performance 
levels on more open-ended tasks.”

These BSW teachers feel this gives groups opportunities to choose their own pathways 
to achieve a common learning goal in more personalized setting. 

Conclusions
The process of learning to place students in ‘same pace of thinking’ groups involves 

attention to personalities, student conversations, and composing and arranging groups 
to limit the talk of dominant students and amplify the talk of quieter students. Most 
importantly, forming these groups is a process of trying what looks likely to work, identifying 
what worked well and what needs to change, and trying again. Judy and Sharon’s strategies 
give you a ‘head start’ to such trial and error. We hope you are surprised and delighted with 
the thinking you ‘hear’.
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